Cargando…
Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic env...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139217/ https://www.ncbi.nlm.nih.gov/pubmed/37108162 http://dx.doi.org/10.3390/ijms24086999 |
_version_ | 1785032894764285952 |
---|---|
author | Li, Chen Zhao, Rong Yang, Hui Ren, Li |
author_facet | Li, Chen Zhao, Rong Yang, Hui Ren, Li |
author_sort | Li, Chen |
collection | PubMed |
description | The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines. |
format | Online Article Text |
id | pubmed-10139217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101392172023-04-28 Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms Li, Chen Zhao, Rong Yang, Hui Ren, Li Int J Mol Sci Review The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines. MDPI 2023-04-10 /pmc/articles/PMC10139217/ /pubmed/37108162 http://dx.doi.org/10.3390/ijms24086999 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Li, Chen Zhao, Rong Yang, Hui Ren, Li Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms |
title | Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms |
title_full | Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms |
title_fullStr | Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms |
title_full_unstemmed | Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms |
title_short | Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms |
title_sort | construction of bone hypoxic microenvironment based on bone-on-a-chip platforms |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139217/ https://www.ncbi.nlm.nih.gov/pubmed/37108162 http://dx.doi.org/10.3390/ijms24086999 |
work_keys_str_mv | AT lichen constructionofbonehypoxicmicroenvironmentbasedonboneonachipplatforms AT zhaorong constructionofbonehypoxicmicroenvironmentbasedonboneonachipplatforms AT yanghui constructionofbonehypoxicmicroenvironmentbasedonboneonachipplatforms AT renli constructionofbonehypoxicmicroenvironmentbasedonboneonachipplatforms |