Cargando…
Structure-aware protein self-supervised learning
MOTIVATION: Protein representation learning methods have shown great potential to many downstream tasks in biological applications. A few recent studies have demonstrated that the self-supervised learning is a promising solution to addressing insufficient labels of proteins, which is a major obstacl...
Autores principales: | Chen, Can (Sam), Zhou, Jingbo, Wang, Fan, Liu, Xue, Dou, Dejing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139775/ https://www.ncbi.nlm.nih.gov/pubmed/37052532 http://dx.doi.org/10.1093/bioinformatics/btad189 |
Ejemplares similares
-
Anatomy-aware self-supervised learning for anomaly detection in chest radiographs
por: Sato, Junya, et al.
Publicado: (2023) -
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
por: Hirohata, Yasuhide, et al.
Publicado: (2023) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Protein–ligand binding affinity prediction with edge awareness and supervised attention
por: Gu, Yuliang, et al.
Publicado: (2022) -
Self-supervised learning for macromolecular structure classification based on cryo-electron tomograms
por: Gupta, Tarun, et al.
Publicado: (2022)