Cargando…
Synthetic dataset of speckle images for fiber optic temperature sensor
The published data correspond to images of simulated specklegrams, which result from the calculation of the modal interference that occurs in a multimode optical fiber. These have a characteristic pattern due to the constructive or destructive interference between the light modes depending on their...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139894/ https://www.ncbi.nlm.nih.gov/pubmed/37122920 http://dx.doi.org/10.1016/j.dib.2023.109134 |
Sumario: | The published data correspond to images of simulated specklegrams, which result from the calculation of the modal interference that occurs in a multimode optical fiber. These have a characteristic pattern due to the constructive or destructive interference between the light modes depending on their phase differences. The specklegram contains valuable information since the propagation of the modes varies according to the influence of some external disturbances, and therefore, the speckle pattern changes. This dataset contains specklegrams that vary according to the temperature. These data have been obtained by simulation using the finite element method (FEM) through the COMSOL multiphysics platform. In the simulation, the vector wave equation is solved, and the refractive index of the fiber is recalculated due to the temperature change. We simulated a 1490 nm wavelength laser, an optical fiber with a core diameter of 50 µm and cladding diameter of 125 µm. The dataset contains specklegrams covering the range of temperatures from 0°C to 120°C in 0.2°C steps. |
---|