Cargando…
Cross-modal autoencoder framework learns holistic representations of cardiovascular state
A fundamental challenge in diagnostics is integrating multiple modalities to develop a joint characterization of physiological state. Using the heart as a model system, we develop a cross-modal autoencoder framework for integrating distinct data modalities and constructing a holistic representation...
Autores principales: | Radhakrishnan, Adityanarayanan, Friedman, Sam F., Khurshid, Shaan, Ng, Kenney, Batra, Puneet, Lubitz, Steven A., Philippakis, Anthony A., Uhler, Caroline |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140057/ https://www.ncbi.nlm.nih.gov/pubmed/37105979 http://dx.doi.org/10.1038/s41467-023-38125-0 |
Ejemplares similares
-
Prediction performance and fairness heterogeneity in cardiovascular risk models
por: Kartoun, Uri, et al.
Publicado: (2022) -
Exploring the link between Gilbert’s syndrome and atherosclerotic cardiovascular disease: insights from a subpopulation-based analysis of over one million individuals
por: Kartoun, Uri, et al.
Publicado: (2023) -
Multi-domain translation between single-cell imaging and sequencing data using autoencoders
por: Yang, Karren Dai, et al.
Publicado: (2021) -
Simple, fast, and flexible framework for matrix completion with infinite width neural networks
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2022) -
Overparameterized neural networks implement associative memory
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2020)