Cargando…
Carbon fluxes related to land use and land cover change in Baden-Württemberg
Spatially explicit information on carbon fluxes related to land use and land cover change (LULCC) is of value for the implementation of local climate change mitigation strategies. However, estimates of these carbon fluxes are often aggregated to larger areas. We estimated committed gross carbon flux...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140081/ https://www.ncbi.nlm.nih.gov/pubmed/37103628 http://dx.doi.org/10.1007/s10661-023-11141-9 |
_version_ | 1785033087444320256 |
---|---|
author | Ulrich, Veit Schultz, Michael Lautenbach, Sven Zipf, Alexander |
author_facet | Ulrich, Veit Schultz, Michael Lautenbach, Sven Zipf, Alexander |
author_sort | Ulrich, Veit |
collection | PubMed |
description | Spatially explicit information on carbon fluxes related to land use and land cover change (LULCC) is of value for the implementation of local climate change mitigation strategies. However, estimates of these carbon fluxes are often aggregated to larger areas. We estimated committed gross carbon fluxes related to LULCC in Baden-Württemberg, Germany, using different emission factors. In doing so, we compared four different data sources regarding their suitability for estimating the fluxes: (a) a land cover dataset derived from OpenStreetMap (OSMlanduse); (b) OSMlanduse with removal of sliver polygons (OSMlanduse cleaned), (c) OSMlanduse enhanced with a remote sensing time series analysis (OSMlanduse+); (d) the LULCC product of Landschaftsveränderungsdienst (LaVerDi) from the German Federal Agency of Cartography and Geodesy. We produced a high range of carbon flux estimates, mostly caused by differences in the area of the LULCC detected by the different change methods. Except for the OSMlanduse change method, all LULCC methods achieved results that are comparable to other gross emission estimates. The carbon flux estimates of the most plausible change methods, OSMlanduse cleaned and OSMlanduse+, were 291,710 Mg C yr(-1) and 93,591 Mg C yr(-1), respectively. Uncertainties were mainly caused by incomplete spatial coverage of OSMlanduse, false positive LULCC due to changes and corrections made in OpenStreetMap during the study period, and a high number of sliver polygons in the OSMlanduse changes. Overall, the results showed that OSM can be successfully used to estimate LULCC carbon fluxes if data preprocessing is performed with the suggested methods. |
format | Online Article Text |
id | pubmed-10140081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-101400812023-04-29 Carbon fluxes related to land use and land cover change in Baden-Württemberg Ulrich, Veit Schultz, Michael Lautenbach, Sven Zipf, Alexander Environ Monit Assess Research Spatially explicit information on carbon fluxes related to land use and land cover change (LULCC) is of value for the implementation of local climate change mitigation strategies. However, estimates of these carbon fluxes are often aggregated to larger areas. We estimated committed gross carbon fluxes related to LULCC in Baden-Württemberg, Germany, using different emission factors. In doing so, we compared four different data sources regarding their suitability for estimating the fluxes: (a) a land cover dataset derived from OpenStreetMap (OSMlanduse); (b) OSMlanduse with removal of sliver polygons (OSMlanduse cleaned), (c) OSMlanduse enhanced with a remote sensing time series analysis (OSMlanduse+); (d) the LULCC product of Landschaftsveränderungsdienst (LaVerDi) from the German Federal Agency of Cartography and Geodesy. We produced a high range of carbon flux estimates, mostly caused by differences in the area of the LULCC detected by the different change methods. Except for the OSMlanduse change method, all LULCC methods achieved results that are comparable to other gross emission estimates. The carbon flux estimates of the most plausible change methods, OSMlanduse cleaned and OSMlanduse+, were 291,710 Mg C yr(-1) and 93,591 Mg C yr(-1), respectively. Uncertainties were mainly caused by incomplete spatial coverage of OSMlanduse, false positive LULCC due to changes and corrections made in OpenStreetMap during the study period, and a high number of sliver polygons in the OSMlanduse changes. Overall, the results showed that OSM can be successfully used to estimate LULCC carbon fluxes if data preprocessing is performed with the suggested methods. Springer International Publishing 2023-04-27 2023 /pmc/articles/PMC10140081/ /pubmed/37103628 http://dx.doi.org/10.1007/s10661-023-11141-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Ulrich, Veit Schultz, Michael Lautenbach, Sven Zipf, Alexander Carbon fluxes related to land use and land cover change in Baden-Württemberg |
title | Carbon fluxes related to land use and land cover change in Baden-Württemberg |
title_full | Carbon fluxes related to land use and land cover change in Baden-Württemberg |
title_fullStr | Carbon fluxes related to land use and land cover change in Baden-Württemberg |
title_full_unstemmed | Carbon fluxes related to land use and land cover change in Baden-Württemberg |
title_short | Carbon fluxes related to land use and land cover change in Baden-Württemberg |
title_sort | carbon fluxes related to land use and land cover change in baden-württemberg |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140081/ https://www.ncbi.nlm.nih.gov/pubmed/37103628 http://dx.doi.org/10.1007/s10661-023-11141-9 |
work_keys_str_mv | AT ulrichveit carbonfluxesrelatedtolanduseandlandcoverchangeinbadenwurttemberg AT schultzmichael carbonfluxesrelatedtolanduseandlandcoverchangeinbadenwurttemberg AT lautenbachsven carbonfluxesrelatedtolanduseandlandcoverchangeinbadenwurttemberg AT zipfalexander carbonfluxesrelatedtolanduseandlandcoverchangeinbadenwurttemberg |