Cargando…
Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides
Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, usin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140171/ https://www.ncbi.nlm.nih.gov/pubmed/36907437 http://dx.doi.org/10.1016/j.jbc.2023.104603 |
_version_ | 1785033107028574208 |
---|---|
author | Ota, Ai Morita, Hiroya Naganuma, Tatsuro Miyamoto, Masatoshi Jojima, Keisuke Nojiri, Koki Matsuda, Junko Kihara, Akio |
author_facet | Ota, Ai Morita, Hiroya Naganuma, Tatsuro Miyamoto, Masatoshi Jojima, Keisuke Nojiri, Koki Matsuda, Junko Kihara, Akio |
author_sort | Ota, Ai |
collection | PubMed |
description | Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, using dihydrosphingosine-CERs as substrates. Until now, the role of DEGS2 in permeability barrier functioning, its contribution to PHS-CER production, and the mechanism that differentiates between these two activities have been unknown. Here, we analyzed the barrier functioning of the epidermis, esophagus, and anterior stomach of Degs2 KO mice and found that there were no differences between Degs2 KO and WT mice, indicating normal permeability barriers in the KO mice. In the epidermis, esophagus, and anterior stomach of Degs2 KO mice, PHS-CER levels were greatly reduced relative to WT mice, but PHS-CERs were still present. We obtained similar results for DEGS2 KO human keratinocytes. These results indicate that although DEGS2 plays a major role in PHS-CER production, another synthesis pathway exists as well. Next, we examined the fatty acid (FA) composition of PHS-CERs in various mouse tissues and found that PHS-CER species containing very-long-chain FAs (≥C21) were more abundant than those containing long-chain FAs (C11–C20). A cell-based assay system revealed that the desaturase and hydroxylase activities of DEGS2 toward substrates with different FA chain lengths differed and that its hydroxylase activity was higher toward substrates containing very-long-chain FAs. Collectively, our findings contribute to the elucidation of the molecular mechanism of PHS-CER production. |
format | Online Article Text |
id | pubmed-10140171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-101401712023-04-29 Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides Ota, Ai Morita, Hiroya Naganuma, Tatsuro Miyamoto, Masatoshi Jojima, Keisuke Nojiri, Koki Matsuda, Junko Kihara, Akio J Biol Chem Research Article Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, using dihydrosphingosine-CERs as substrates. Until now, the role of DEGS2 in permeability barrier functioning, its contribution to PHS-CER production, and the mechanism that differentiates between these two activities have been unknown. Here, we analyzed the barrier functioning of the epidermis, esophagus, and anterior stomach of Degs2 KO mice and found that there were no differences between Degs2 KO and WT mice, indicating normal permeability barriers in the KO mice. In the epidermis, esophagus, and anterior stomach of Degs2 KO mice, PHS-CER levels were greatly reduced relative to WT mice, but PHS-CERs were still present. We obtained similar results for DEGS2 KO human keratinocytes. These results indicate that although DEGS2 plays a major role in PHS-CER production, another synthesis pathway exists as well. Next, we examined the fatty acid (FA) composition of PHS-CERs in various mouse tissues and found that PHS-CER species containing very-long-chain FAs (≥C21) were more abundant than those containing long-chain FAs (C11–C20). A cell-based assay system revealed that the desaturase and hydroxylase activities of DEGS2 toward substrates with different FA chain lengths differed and that its hydroxylase activity was higher toward substrates containing very-long-chain FAs. Collectively, our findings contribute to the elucidation of the molecular mechanism of PHS-CER production. American Society for Biochemistry and Molecular Biology 2023-03-11 /pmc/articles/PMC10140171/ /pubmed/36907437 http://dx.doi.org/10.1016/j.jbc.2023.104603 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Ota, Ai Morita, Hiroya Naganuma, Tatsuro Miyamoto, Masatoshi Jojima, Keisuke Nojiri, Koki Matsuda, Junko Kihara, Akio Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides |
title | Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides |
title_full | Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides |
title_fullStr | Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides |
title_full_unstemmed | Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides |
title_short | Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides |
title_sort | bifunctional degs2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140171/ https://www.ncbi.nlm.nih.gov/pubmed/36907437 http://dx.doi.org/10.1016/j.jbc.2023.104603 |
work_keys_str_mv | AT otaai bifunctionaldegs2hashigherhydroxylaseactivitytowardsubstrateswithverylongchainfattyacidsintheproductionofphytosphingosineceramides AT moritahiroya bifunctionaldegs2hashigherhydroxylaseactivitytowardsubstrateswithverylongchainfattyacidsintheproductionofphytosphingosineceramides AT naganumatatsuro bifunctionaldegs2hashigherhydroxylaseactivitytowardsubstrateswithverylongchainfattyacidsintheproductionofphytosphingosineceramides AT miyamotomasatoshi bifunctionaldegs2hashigherhydroxylaseactivitytowardsubstrateswithverylongchainfattyacidsintheproductionofphytosphingosineceramides AT jojimakeisuke bifunctionaldegs2hashigherhydroxylaseactivitytowardsubstrateswithverylongchainfattyacidsintheproductionofphytosphingosineceramides AT nojirikoki bifunctionaldegs2hashigherhydroxylaseactivitytowardsubstrateswithverylongchainfattyacidsintheproductionofphytosphingosineceramides AT matsudajunko bifunctionaldegs2hashigherhydroxylaseactivitytowardsubstrateswithverylongchainfattyacidsintheproductionofphytosphingosineceramides AT kiharaakio bifunctionaldegs2hashigherhydroxylaseactivitytowardsubstrateswithverylongchainfattyacidsintheproductionofphytosphingosineceramides |