Cargando…
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
INTRODUCTION: To develop a novel deep learning model to automatically grade adenoid hypertrophy, based on nasal endoscopy, and asses its performance with that of E.N.T. clinicians. METHODS: A total of 3,179 nasoendoscopic images, including 4-grade adenoid hypertrophy (Parikh grading standard, 2006),...
Autores principales: | Bi, Mingmin, Zheng, Siting, Li, Xuechen, Liu, Haiyan, Feng, Xiaoshan, Fan, Yunping, Shen, Linlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140414/ https://www.ncbi.nlm.nih.gov/pubmed/37122318 http://dx.doi.org/10.3389/fmed.2023.1142261 |
Ejemplares similares
-
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
por: Xu, Jing, et al.
Publicado: (2021) -
An incidental finding of ANET in a patient with perforated appendix: A case report
por: Basukala, Sunil, et al.
Publicado: (2021) -
SelANet: decision-assisting selective sleep apnea detection based on confidence score
por: Bark, Beomjun, et al.
Publicado: (2023) -
Role of Peak Nasal Inspiratory Flow for Measuring the Effectiveness of Surgery in Children with Adenoidal Hypertrophy
por: Cengiz, Abdurrahman B, et al.
Publicado: (2020) -
The combination of nasal steroids and anti-leukotriene to reduce adenectomy in children with OSA and adenoid hypertrophy
por: Eldegeir, Manal, et al.
Publicado: (2023)