Cargando…
Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study
Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acq...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140458/ https://www.ncbi.nlm.nih.gov/pubmed/36958327 http://dx.doi.org/10.1016/j.xcrm.2023.100980 |
_version_ | 1785033165703741440 |
---|---|
author | Niehues, Jan Moritz Quirke, Philip West, Nicholas P. Grabsch, Heike I. van Treeck, Marko Schirris, Yoni Veldhuizen, Gregory P. Hutchins, Gordon G.A. Richman, Susan D. Foersch, Sebastian Brinker, Titus J. Fukuoka, Junya Bychkov, Andrey Uegami, Wataru Truhn, Daniel Brenner, Hermann Brobeil, Alexander Hoffmeister, Michael Kather, Jakob Nikolas |
author_facet | Niehues, Jan Moritz Quirke, Philip West, Nicholas P. Grabsch, Heike I. van Treeck, Marko Schirris, Yoni Veldhuizen, Gregory P. Hutchins, Gordon G.A. Richman, Susan D. Foersch, Sebastian Brinker, Titus J. Fukuoka, Junya Bychkov, Andrey Uegami, Wataru Truhn, Daniel Brenner, Hermann Brobeil, Alexander Hoffmeister, Michael Kather, Jakob Nikolas |
author_sort | Niehues, Jan Moritz |
collection | PubMed |
description | Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient. |
format | Online Article Text |
id | pubmed-10140458 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-101404582023-04-29 Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study Niehues, Jan Moritz Quirke, Philip West, Nicholas P. Grabsch, Heike I. van Treeck, Marko Schirris, Yoni Veldhuizen, Gregory P. Hutchins, Gordon G.A. Richman, Susan D. Foersch, Sebastian Brinker, Titus J. Fukuoka, Junya Bychkov, Andrey Uegami, Wataru Truhn, Daniel Brenner, Hermann Brobeil, Alexander Hoffmeister, Michael Kather, Jakob Nikolas Cell Rep Med Article Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient. Elsevier 2023-03-22 /pmc/articles/PMC10140458/ /pubmed/36958327 http://dx.doi.org/10.1016/j.xcrm.2023.100980 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Niehues, Jan Moritz Quirke, Philip West, Nicholas P. Grabsch, Heike I. van Treeck, Marko Schirris, Yoni Veldhuizen, Gregory P. Hutchins, Gordon G.A. Richman, Susan D. Foersch, Sebastian Brinker, Titus J. Fukuoka, Junya Bychkov, Andrey Uegami, Wataru Truhn, Daniel Brenner, Hermann Brobeil, Alexander Hoffmeister, Michael Kather, Jakob Nikolas Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study |
title | Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study |
title_full | Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study |
title_fullStr | Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study |
title_full_unstemmed | Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study |
title_short | Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study |
title_sort | generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: a retrospective multi-centric study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140458/ https://www.ncbi.nlm.nih.gov/pubmed/36958327 http://dx.doi.org/10.1016/j.xcrm.2023.100980 |
work_keys_str_mv | AT niehuesjanmoritz generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT quirkephilip generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT westnicholasp generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT grabschheikei generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT vantreeckmarko generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT schirrisyoni generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT veldhuizengregoryp generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT hutchinsgordonga generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT richmansusand generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT foerschsebastian generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT brinkertitusj generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT fukuokajunya generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT bychkovandrey generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT uegamiwataru generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT truhndaniel generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT brennerhermann generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT brobeilalexander generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT hoffmeistermichael generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy AT katherjakobnikolas generalizablebiomarkerpredictionfromcancerpathologyslideswithselfsuperviseddeeplearningaretrospectivemulticentricstudy |