Cargando…
Development and validation of a machine learning-based detection system to improve precision screening for medication errors in the neonatal intensive care unit
Aim: To develop models that predict the presence of medication errors (MEs) (prescription, preparation, administration, and monitoring) using machine learning in NICU patients. Design: Prospective, observational cohort study randomized with machine learning (ML) algorithms. Setting: A 22-bed capacit...
Autores principales: | Yalçın, Nadir, Kaşıkcı, Merve, Çelik, Hasan Tolga, Allegaert, Karel, Demirkan, Kutay, Yiğit, Şule, Yurdakök, Murat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140576/ https://www.ncbi.nlm.nih.gov/pubmed/37124199 http://dx.doi.org/10.3389/fphar.2023.1151560 |
Ejemplares similares
-
Impact of clinical pharmacist-led intervention for drug-related problems in neonatal intensive care unit a randomized controlled trial
por: Yalçın, Nadir, et al.
Publicado: (2023) -
An Artificial Intelligence Approach to Support Detection of Neonatal Adverse Drug Reactions Based on Severity and Probability Scores: A New Risk Score as Web-Tool
por: Yalçın, Nadir, et al.
Publicado: (2022) -
Novel Method for Early Prediction of Clinically Significant Drug–Drug Interactions with a Machine Learning Algorithm Based on Risk Matrix Analysis in the NICU
por: Yalçın, Nadir, et al.
Publicado: (2022) -
Development and validation of machine learning-based clinical decision support tool for identifying malnutrition in NICU patients
por: Yalçın, Nadir, et al.
Publicado: (2023) -
The clinical and radiological course of bronchopulmonary dysplasia in twins treated with mesenchymal stem cells and followed up using lung ultrasonography
por: Öktem, Ahmet, et al.
Publicado: (2020)