Cargando…

Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers

To develop therapies for Alzheimer’s disease, we need accurate in vivo diagnostics. Multiple proteomic studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify...

Descripción completa

Detalles Bibliográficos
Autores principales: van Zalm, Patrick W., Ahmed, Saima, Fatou, Benoit, Schreiber, Rudy, Barnaby, Omar, Boxer, Adam, Zetterberg, Henrik, Steen, Judith A., Steen, Hanno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140596/
https://www.ncbi.nlm.nih.gov/pubmed/37075703
http://dx.doi.org/10.1016/j.xcrm.2023.101005
_version_ 1785033197271121920
author van Zalm, Patrick W.
Ahmed, Saima
Fatou, Benoit
Schreiber, Rudy
Barnaby, Omar
Boxer, Adam
Zetterberg, Henrik
Steen, Judith A.
Steen, Hanno
author_facet van Zalm, Patrick W.
Ahmed, Saima
Fatou, Benoit
Schreiber, Rudy
Barnaby, Omar
Boxer, Adam
Zetterberg, Henrik
Steen, Judith A.
Steen, Hanno
author_sort van Zalm, Patrick W.
collection PubMed
description To develop therapies for Alzheimer’s disease, we need accurate in vivo diagnostics. Multiple proteomic studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify an effective biomarker panel. We combine ten independent datasets for biomarker identification: seven datasets from 150 patients/controls for discovery, one dataset with 20 patients/controls for down-selection, and two datasets with 494 patients/controls for validation. The discovery results in 21 biomarker candidates and down-selection in three, to be validated in the two additional large-scale proteomics datasets with 228 diseased and 266 control samples. This resulting 3-protein biomarker panel differentiates Alzheimer’s disease (AD) from controls in the two validation cohorts with areas under the receiver operating characteristic curve (AUROCs) of 0.83 and 0.87, respectively. This study highlights the value of systematically re-analyzing previously published proteomics data and the need for more stringent data deposition.
format Online
Article
Text
id pubmed-10140596
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-101405962023-04-29 Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers van Zalm, Patrick W. Ahmed, Saima Fatou, Benoit Schreiber, Rudy Barnaby, Omar Boxer, Adam Zetterberg, Henrik Steen, Judith A. Steen, Hanno Cell Rep Med Article To develop therapies for Alzheimer’s disease, we need accurate in vivo diagnostics. Multiple proteomic studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify an effective biomarker panel. We combine ten independent datasets for biomarker identification: seven datasets from 150 patients/controls for discovery, one dataset with 20 patients/controls for down-selection, and two datasets with 494 patients/controls for validation. The discovery results in 21 biomarker candidates and down-selection in three, to be validated in the two additional large-scale proteomics datasets with 228 diseased and 266 control samples. This resulting 3-protein biomarker panel differentiates Alzheimer’s disease (AD) from controls in the two validation cohorts with areas under the receiver operating characteristic curve (AUROCs) of 0.83 and 0.87, respectively. This study highlights the value of systematically re-analyzing previously published proteomics data and the need for more stringent data deposition. Elsevier 2023-04-18 /pmc/articles/PMC10140596/ /pubmed/37075703 http://dx.doi.org/10.1016/j.xcrm.2023.101005 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
van Zalm, Patrick W.
Ahmed, Saima
Fatou, Benoit
Schreiber, Rudy
Barnaby, Omar
Boxer, Adam
Zetterberg, Henrik
Steen, Judith A.
Steen, Hanno
Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers
title Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers
title_full Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers
title_fullStr Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers
title_full_unstemmed Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers
title_short Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers
title_sort meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as alzheimer’s disease biomarkers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140596/
https://www.ncbi.nlm.nih.gov/pubmed/37075703
http://dx.doi.org/10.1016/j.xcrm.2023.101005
work_keys_str_mv AT vanzalmpatrickw metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers
AT ahmedsaima metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers
AT fatoubenoit metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers
AT schreiberrudy metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers
AT barnabyomar metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers
AT boxeradam metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers
AT zetterberghenrik metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers
AT steenjuditha metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers
AT steenhanno metaanalysisofpublishedcerebrospinalfluidproteomicsdataidentifiesandvalidatesmetabolicenzymepanelasalzheimersdiseasebiomarkers