Cargando…
Toward structuring real-world data: Deep learning for extracting oncology information from clinical text with patient-level supervision
Most detailed patient information in real-world data (RWD) is only consistently available in free-text clinical documents. Manual curation is expensive and time consuming. Developing natural language processing (NLP) methods for structuring RWD is thus essential for scaling real-world evidence gener...
Autores principales: | Preston, Sam, Wei, Mu, Rao, Rajesh, Tinn, Robert, Usuyama, Naoto, Lucas, Michael, Gu, Yu, Weerasinghe, Roshanthi, Lee, Soohee, Piening, Brian, Tittel, Paul, Valluri, Naveen, Naumann, Tristan, Bifulco, Carlo, Poon, Hoifung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140604/ https://www.ncbi.nlm.nih.gov/pubmed/37123439 http://dx.doi.org/10.1016/j.patter.2023.100726 |
Ejemplares similares
-
Fine-tuning large neural language models for biomedical natural language processing
por: Tinn, Robert, et al.
Publicado: (2023) -
A Random Forest Genomic Classifier for Tumor Agnostic Prediction of
Response to Anti-PD1 Immunotherapy
por: Bigelow, Emma, et al.
Publicado: (2022) -
Actualizing Personalized Healthcare for Women through Connected Data Systems: Breast Cancer Screening and Diagnosis
por: Nelson, Heidi D, et al.
Publicado: (2013) -
Development of an electronic breast pathology database in a community health system
por: Nelson, Heidi D., et al.
Publicado: (2014) -
Mammography Screening in a Large Health System Following the U.S. Preventive Services Task Force Recommendations and the Affordable Care Act
por: Nelson, Heidi D., et al.
Publicado: (2015)