Cargando…

Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC) has been left behind in the evolution of personalized medicine. Predictive markers of response to therapy are lacking in PDAC despite various histological and transcriptional classification schemes. We report an artificial intelligence (AI) approach to histolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Nimgaonkar, Vivek, Krishna, Viswesh, Krishna, Vrishab, Tiu, Ekin, Joshi, Anirudh, Vrabac, Damir, Bhambhvani, Hriday, Smith, Katelyn, Johansen, Julia S., Makawita, Shalini, Musher, Benjamin, Mehta, Arnav, Hendifar, Andrew, Wainberg, Zev, Sohal, Davendra, Fountzilas, Christos, Singhi, Aatur, Rajpurkar, Pranav, Collisson, Eric A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140610/
https://www.ncbi.nlm.nih.gov/pubmed/37044094
http://dx.doi.org/10.1016/j.xcrm.2023.101013
_version_ 1785033200677945344
author Nimgaonkar, Vivek
Krishna, Viswesh
Krishna, Vrishab
Tiu, Ekin
Joshi, Anirudh
Vrabac, Damir
Bhambhvani, Hriday
Smith, Katelyn
Johansen, Julia S.
Makawita, Shalini
Musher, Benjamin
Mehta, Arnav
Hendifar, Andrew
Wainberg, Zev
Sohal, Davendra
Fountzilas, Christos
Singhi, Aatur
Rajpurkar, Pranav
Collisson, Eric A.
author_facet Nimgaonkar, Vivek
Krishna, Viswesh
Krishna, Vrishab
Tiu, Ekin
Joshi, Anirudh
Vrabac, Damir
Bhambhvani, Hriday
Smith, Katelyn
Johansen, Julia S.
Makawita, Shalini
Musher, Benjamin
Mehta, Arnav
Hendifar, Andrew
Wainberg, Zev
Sohal, Davendra
Fountzilas, Christos
Singhi, Aatur
Rajpurkar, Pranav
Collisson, Eric A.
author_sort Nimgaonkar, Vivek
collection PubMed
description Pancreatic ductal adenocarcinoma (PDAC) has been left behind in the evolution of personalized medicine. Predictive markers of response to therapy are lacking in PDAC despite various histological and transcriptional classification schemes. We report an artificial intelligence (AI) approach to histologic feature examination that extracts a signature predictive of disease-specific survival (DSS) in patients with PDAC receiving adjuvant gemcitabine. We demonstrate that this AI-generated histologic signature is associated with outcomes following adjuvant gemcitabine, while three previously developed transcriptomic classification systems are not (n = 47). We externally validate this signature in an independent cohort of patients treated with adjuvant gemcitabine (n = 46). Finally, we demonstrate that the signature does not stratify survival outcomes in a third cohort of untreated patients (n = 161), suggesting that the signature is specifically predictive of treatment-related outcomes but is not generally prognostic. This imaging analysis pipeline has promise in the development of actionable markers in other clinical settings where few biomarkers currently exist.
format Online
Article
Text
id pubmed-10140610
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-101406102023-04-29 Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer Nimgaonkar, Vivek Krishna, Viswesh Krishna, Vrishab Tiu, Ekin Joshi, Anirudh Vrabac, Damir Bhambhvani, Hriday Smith, Katelyn Johansen, Julia S. Makawita, Shalini Musher, Benjamin Mehta, Arnav Hendifar, Andrew Wainberg, Zev Sohal, Davendra Fountzilas, Christos Singhi, Aatur Rajpurkar, Pranav Collisson, Eric A. Cell Rep Med Report Pancreatic ductal adenocarcinoma (PDAC) has been left behind in the evolution of personalized medicine. Predictive markers of response to therapy are lacking in PDAC despite various histological and transcriptional classification schemes. We report an artificial intelligence (AI) approach to histologic feature examination that extracts a signature predictive of disease-specific survival (DSS) in patients with PDAC receiving adjuvant gemcitabine. We demonstrate that this AI-generated histologic signature is associated with outcomes following adjuvant gemcitabine, while three previously developed transcriptomic classification systems are not (n = 47). We externally validate this signature in an independent cohort of patients treated with adjuvant gemcitabine (n = 46). Finally, we demonstrate that the signature does not stratify survival outcomes in a third cohort of untreated patients (n = 161), suggesting that the signature is specifically predictive of treatment-related outcomes but is not generally prognostic. This imaging analysis pipeline has promise in the development of actionable markers in other clinical settings where few biomarkers currently exist. Elsevier 2023-04-11 /pmc/articles/PMC10140610/ /pubmed/37044094 http://dx.doi.org/10.1016/j.xcrm.2023.101013 Text en © 2023 Valar Labs, Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Report
Nimgaonkar, Vivek
Krishna, Viswesh
Krishna, Vrishab
Tiu, Ekin
Joshi, Anirudh
Vrabac, Damir
Bhambhvani, Hriday
Smith, Katelyn
Johansen, Julia S.
Makawita, Shalini
Musher, Benjamin
Mehta, Arnav
Hendifar, Andrew
Wainberg, Zev
Sohal, Davendra
Fountzilas, Christos
Singhi, Aatur
Rajpurkar, Pranav
Collisson, Eric A.
Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer
title Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer
title_full Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer
title_fullStr Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer
title_full_unstemmed Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer
title_short Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer
title_sort development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140610/
https://www.ncbi.nlm.nih.gov/pubmed/37044094
http://dx.doi.org/10.1016/j.xcrm.2023.101013
work_keys_str_mv AT nimgaonkarvivek developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT krishnaviswesh developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT krishnavrishab developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT tiuekin developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT joshianirudh developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT vrabacdamir developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT bhambhvanihriday developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT smithkatelyn developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT johansenjulias developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT makawitashalini developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT musherbenjamin developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT mehtaarnav developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT hendifarandrew developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT wainbergzev developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT sohaldavendra developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT fountzilaschristos developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT singhiaatur developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT rajpurkarpranav developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer
AT collissonerica developmentofanartificialintelligencederivedhistologicsignatureassociatedwithadjuvantgemcitabinetreatmentoutcomesinpancreaticcancer