Cargando…
A deep-learning method for the end-to-end prediction of intracranial aneurysm rupture risk
It is critical to accurately predict the rupture risk of an intracranial aneurysm (IA) for timely and appropriate treatment because the fatality rate after rupture is [Formula: see text]. Existing methods relying on morphological features (e.g., height-width ratio) measured manually by neuroradiolog...
Autores principales: | Li, Peiying, Liu, Yongchang, Zhou, Jiafeng, Tu, Shikui, Zhao, Bing, Wan, Jieqing, Yang, Yunjun, Xu, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140611/ https://www.ncbi.nlm.nih.gov/pubmed/37123440 http://dx.doi.org/10.1016/j.patter.2023.100709 |
Ejemplares similares
-
Rupture Risk Assessment for Anterior Communicating Artery Aneurysms Using Decision Tree Modeling
por: Liu, Jinjin, et al.
Publicado: (2022) -
Irregular Pulsation of Intracranial Aneurysm Detected by Four-Dimensional CT Angiography and Associated With Small Aneurysm Rupture: A Single-Center Prospective Analysis
por: Zhou, Jiafeng, et al.
Publicado: (2022) -
Ruptured Intracranial Aneurysms
por: McCaughey, W. T. E.
Publicado: (1956) -
End-to-End Deep Learning Method for Detection of Invasive Parkinson’s Disease
por: Mahmood, Awais, et al.
Publicado: (2023) -
Automatic differentiation of ruptured and unruptured intracranial aneurysms on computed tomography angiography based on deep learning and radiomics
por: Feng, Junbang, et al.
Publicado: (2023)