Cargando…
A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility
Brain aging is a complex, multifaceted process that can be challenging to model in ways that are accurate and clinically useful. One of the most common approaches has been to apply machine learning to neuroimaging data with the goal of predicting age in a data-driven manner. Building on initial brai...
Autores principales: | Jirsaraie, Robert J., Gorelik, Aaron J., Gatavins, Martins M., Engemann, Denis A., Bogdan, Ryan, Barch, Deanna M., Sotiras, Aristeidis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140612/ https://www.ncbi.nlm.nih.gov/pubmed/37123443 http://dx.doi.org/10.1016/j.patter.2023.100712 |
Ejemplares similares
-
Benchmarking the generalizability of brain age models: Challenges posed by scanner variance and prediction bias
por: Jirsaraie, Robert J., et al.
Publicado: (2022) -
Analyse patient-level heterogeneity in Alzheimer’s Disease using multimodal normative modelling
por: Kumar, Sayantan, et al.
Publicado: (2023) -
Inference and Prediction Diverge in Biomedicine
por: Bzdok, Danilo, et al.
Publicado: (2020) -
Synthesizing pseudo-T2w images to recapture missing data in neonatal neuroimaging with applications in rs-fMRI
por: Kaplan, Sydney, et al.
Publicado: (2022) -
Uncovering system-specific stress signatures in primate teeth with multimodal imaging
por: Austin, Christine, et al.
Publicado: (2016)