Cargando…

Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys

Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Her...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonizzato, Marco, Guay Hottin, Rose, Côté, Sandrine L., Massai, Elena, Choinière, Léo, Macar, Uzay, Laferrière, Samuel, Sirpal, Parikshat, Quessy, Stephan, Lajoie, Guillaume, Martinez, Marina, Dancause, Numa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140617/
https://www.ncbi.nlm.nih.gov/pubmed/37044093
http://dx.doi.org/10.1016/j.xcrm.2023.101008
_version_ 1785033202327355392
author Bonizzato, Marco
Guay Hottin, Rose
Côté, Sandrine L.
Massai, Elena
Choinière, Léo
Macar, Uzay
Laferrière, Samuel
Sirpal, Parikshat
Quessy, Stephan
Lajoie, Guillaume
Martinez, Marina
Dancause, Numa
author_facet Bonizzato, Marco
Guay Hottin, Rose
Côté, Sandrine L.
Massai, Elena
Choinière, Léo
Macar, Uzay
Laferrière, Samuel
Sirpal, Parikshat
Quessy, Stephan
Lajoie, Guillaume
Martinez, Marina
Dancause, Numa
author_sort Bonizzato, Marco
collection PubMed
description Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve “prior” expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness.
format Online
Article
Text
id pubmed-10140617
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-101406172023-04-29 Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys Bonizzato, Marco Guay Hottin, Rose Côté, Sandrine L. Massai, Elena Choinière, Léo Macar, Uzay Laferrière, Samuel Sirpal, Parikshat Quessy, Stephan Lajoie, Guillaume Martinez, Marina Dancause, Numa Cell Rep Med Article Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve “prior” expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness. Elsevier 2023-04-11 /pmc/articles/PMC10140617/ /pubmed/37044093 http://dx.doi.org/10.1016/j.xcrm.2023.101008 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Bonizzato, Marco
Guay Hottin, Rose
Côté, Sandrine L.
Massai, Elena
Choinière, Léo
Macar, Uzay
Laferrière, Samuel
Sirpal, Parikshat
Quessy, Stephan
Lajoie, Guillaume
Martinez, Marina
Dancause, Numa
Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
title Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
title_full Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
title_fullStr Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
title_full_unstemmed Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
title_short Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
title_sort autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140617/
https://www.ncbi.nlm.nih.gov/pubmed/37044093
http://dx.doi.org/10.1016/j.xcrm.2023.101008
work_keys_str_mv AT bonizzatomarco autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT guayhottinrose autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT cotesandrinel autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT massaielena autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT choiniereleo autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT macaruzay autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT laferrieresamuel autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT sirpalparikshat autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT quessystephan autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT lajoieguillaume autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT martinezmarina autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys
AT dancausenuma autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys