Cargando…
Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Her...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140617/ https://www.ncbi.nlm.nih.gov/pubmed/37044093 http://dx.doi.org/10.1016/j.xcrm.2023.101008 |
_version_ | 1785033202327355392 |
---|---|
author | Bonizzato, Marco Guay Hottin, Rose Côté, Sandrine L. Massai, Elena Choinière, Léo Macar, Uzay Laferrière, Samuel Sirpal, Parikshat Quessy, Stephan Lajoie, Guillaume Martinez, Marina Dancause, Numa |
author_facet | Bonizzato, Marco Guay Hottin, Rose Côté, Sandrine L. Massai, Elena Choinière, Léo Macar, Uzay Laferrière, Samuel Sirpal, Parikshat Quessy, Stephan Lajoie, Guillaume Martinez, Marina Dancause, Numa |
author_sort | Bonizzato, Marco |
collection | PubMed |
description | Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve “prior” expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness. |
format | Online Article Text |
id | pubmed-10140617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-101406172023-04-29 Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys Bonizzato, Marco Guay Hottin, Rose Côté, Sandrine L. Massai, Elena Choinière, Léo Macar, Uzay Laferrière, Samuel Sirpal, Parikshat Quessy, Stephan Lajoie, Guillaume Martinez, Marina Dancause, Numa Cell Rep Med Article Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve “prior” expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness. Elsevier 2023-04-11 /pmc/articles/PMC10140617/ /pubmed/37044093 http://dx.doi.org/10.1016/j.xcrm.2023.101008 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Bonizzato, Marco Guay Hottin, Rose Côté, Sandrine L. Massai, Elena Choinière, Léo Macar, Uzay Laferrière, Samuel Sirpal, Parikshat Quessy, Stephan Lajoie, Guillaume Martinez, Marina Dancause, Numa Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys |
title | Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys |
title_full | Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys |
title_fullStr | Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys |
title_full_unstemmed | Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys |
title_short | Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys |
title_sort | autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140617/ https://www.ncbi.nlm.nih.gov/pubmed/37044093 http://dx.doi.org/10.1016/j.xcrm.2023.101008 |
work_keys_str_mv | AT bonizzatomarco autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT guayhottinrose autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT cotesandrinel autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT massaielena autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT choiniereleo autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT macaruzay autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT laferrieresamuel autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT sirpalparikshat autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT quessystephan autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT lajoieguillaume autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT martinezmarina autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys AT dancausenuma autonomousoptimizationofneuroprostheticstimulationparametersthatdrivethemotorcortexandspinalcordoutputsinratsandmonkeys |