Cargando…
DE-MHAIPs: Identification of SARS-CoV-2 phosphorylation sites based on differential evolution multi-feature learning and multi-head attention mechanism
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world affects the normal lives of people all over the world. The computational methods can be used to accurately identify SARS-CoV-2 phosphorylation sites. In this paper, a new prediction model of SARS-CoV-2...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140648/ https://www.ncbi.nlm.nih.gov/pubmed/37120990 http://dx.doi.org/10.1016/j.compbiomed.2023.106935 |
Sumario: | The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world affects the normal lives of people all over the world. The computational methods can be used to accurately identify SARS-CoV-2 phosphorylation sites. In this paper, a new prediction model of SARS-CoV-2 phosphorylation sites, called DE-MHAIPs, is proposed. First, we use six feature extraction methods to extract protein sequence information from different perspectives. For the first time, we use a differential evolution (DE) algorithm to learn individual feature weights and fuse multi-information in a weighted combination. Next, Group LASSO is used to select a subset of good features. Then, the important protein information is given higher weight through multi-head attention. After that, the processed data is fed into long short-term memory network (LSTM) to further enhance model's ability to learn features. Finally, the data from LSTM are input into fully connected neural network (FCN) to predict SARS-CoV-2 phosphorylation sites. The AUC values of the S/T and Y datasets under 5-fold cross-validation reach 91.98% and 98.32%, respectively. The AUC values of the two datasets on the independent test set reach 91.72% and 97.78%, respectively. The experimental results show that the DE-MHAIPs method exhibits excellent predictive ability compared with other methods. |
---|