Cargando…

Disruption to tRNA Modification by Queuine Contributes to Inflammatory Bowel Disease

BACKGROUNDS AND AIMS: Transfer RNA (tRNA) is the most extensively modified RNA in cells. Queuosine modification is a fundamental process for ensuring the fidelity and efficiency of translation from RNA to protein. In eukaryotes, Queuosine tRNA (Q-tRNA) modification relies on the intestinal microbial...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jilei, Zhang, Yongguo, McGrenaghan, Callum J., Kelly, Vincent P., Xia, Yinglin, Sun, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140797/
https://www.ncbi.nlm.nih.gov/pubmed/36801450
http://dx.doi.org/10.1016/j.jcmgh.2023.02.006
Descripción
Sumario:BACKGROUNDS AND AIMS: Transfer RNA (tRNA) is the most extensively modified RNA in cells. Queuosine modification is a fundamental process for ensuring the fidelity and efficiency of translation from RNA to protein. In eukaryotes, Queuosine tRNA (Q-tRNA) modification relies on the intestinal microbial product queuine. However, the roles and potential mechanisms of Q-containing tRNA (Q-tRNA) modifications in inflammatory bowel disease (IBD) are unknown. METHODS: We explored the Q-tRNA modifications and expression of QTRT1 (queuine tRNA-ribosyltransferase 1) in patients with IBD by investigating human biopsies and reanalyzing datasets. We used colitis models, QTRT1 knockout mice, organoids, and cultured cells to investigate the molecular mechanisms of Q-tRNA modifications in intestinal inflammation. RESULTS: QTRT1 expression was significantly downregulated in ulcerative colitis and Crohn’s disease patients. The 4 Q-tRNA–related tRNA synthetases (asparaginyl-, aspartyl-, histidyl-, and tyrosyl-tRNA synthetase) were decreased in IBD patients. This reduction was further confirmed in a dextran sulfate sodium–induced colitis model and interleukin-10–deficient mice. Reduced QTRT1 was significantly correlated with cell proliferation and intestinal junctions, including downregulation of β-catenin and claudin-5 and the upregulation of claudin-2. These alterations were confirmed in vitro by deleting the QTRT1 gene from cells and in vivo using QTRT1 knockout mice. Queuine treatment significantly enhanced cell proliferation and junction activity in cell lines and organoids. Queuine treatment also reduced inflammation in epithelial cells. Moreover, altered QTRT1-related metabolites were found in human IBD. CONCLUSIONS: tRNA modifications play an unexplored novel role in the pathogenesis of intestinal inflammation by altering epithelial proliferation and junction formation. Further investigation of the role of tRNA modifications will uncover novel molecular mechanisms for the prevention and treatment of IBD.