Cargando…
FSVM: A Few-Shot Threat Detection Method for X-ray Security Images
In recent years, automatic detection of threats in X-ray baggage has become important in security inspection. However, the training of threat detectors often requires extensive, well-annotated images, which are hard to procure, especially for rare contraband items. In this paper, a few-shot SVM-cons...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140833/ https://www.ncbi.nlm.nih.gov/pubmed/37112410 http://dx.doi.org/10.3390/s23084069 |
Sumario: | In recent years, automatic detection of threats in X-ray baggage has become important in security inspection. However, the training of threat detectors often requires extensive, well-annotated images, which are hard to procure, especially for rare contraband items. In this paper, a few-shot SVM-constraint threat detection model, named FSVM is proposed, which aims at detecting unseen contraband items with only a small number of labeled samples. Rather than simply finetuning the original model, FSVM embeds a derivable SVM layer to back-propagate the supervised decision information into the former layers. A combined loss function utilizing SVM loss is also created as the additional constraint. We have evaluated FSVM on the public security baggage dataset SIXray, performing experiments on 10-shot and 30-shot samples under three class divisions. Experimental results show that compared with four common few-shot detection models, FSVM has the highest performance and is more suitable for complex distributed datasets (e.g., X-ray parcels). |
---|