Cargando…

FSVM: A Few-Shot Threat Detection Method for X-ray Security Images

In recent years, automatic detection of threats in X-ray baggage has become important in security inspection. However, the training of threat detectors often requires extensive, well-annotated images, which are hard to procure, especially for rare contraband items. In this paper, a few-shot SVM-cons...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Cheng, Liu, Jiayue, Han, Ping, Chen, Mingrui, Liao, Dayu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140833/
https://www.ncbi.nlm.nih.gov/pubmed/37112410
http://dx.doi.org/10.3390/s23084069
Descripción
Sumario:In recent years, automatic detection of threats in X-ray baggage has become important in security inspection. However, the training of threat detectors often requires extensive, well-annotated images, which are hard to procure, especially for rare contraband items. In this paper, a few-shot SVM-constraint threat detection model, named FSVM is proposed, which aims at detecting unseen contraband items with only a small number of labeled samples. Rather than simply finetuning the original model, FSVM embeds a derivable SVM layer to back-propagate the supervised decision information into the former layers. A combined loss function utilizing SVM loss is also created as the additional constraint. We have evaluated FSVM on the public security baggage dataset SIXray, performing experiments on 10-shot and 30-shot samples under three class divisions. Experimental results show that compared with four common few-shot detection models, FSVM has the highest performance and is more suitable for complex distributed datasets (e.g., X-ray parcels).