Cargando…
Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds
The synthesis of novel copolymers using one-step reversible addition-fragmentation chain transfer (RAFT) copolymerization of biocompatible methacrylic acid (MAA), lauryl methacrylate (LMA), and difunctional ethylene glycol dimethacrylate (EGDMA) as a branching agent is reported. The obtained amphiph...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140914/ https://www.ncbi.nlm.nih.gov/pubmed/37111683 http://dx.doi.org/10.3390/pharmaceutics15041198 |
_version_ | 1785033267418759168 |
---|---|
author | Balafouti, Anastasia Pispas, Stergios |
author_facet | Balafouti, Anastasia Pispas, Stergios |
author_sort | Balafouti, Anastasia |
collection | PubMed |
description | The synthesis of novel copolymers using one-step reversible addition-fragmentation chain transfer (RAFT) copolymerization of biocompatible methacrylic acid (MAA), lauryl methacrylate (LMA), and difunctional ethylene glycol dimethacrylate (EGDMA) as a branching agent is reported. The obtained amphiphilic hyperbranched H-P(MAA-co-LMA) copolymers are molecularly characterized by size exclusion chromatography (SEC), FTIR, and (1)H-NMR spectroscopy, and subsequently investigated in terms of their self-assembly behavior in aqueous media. The formation of nanoaggregates of varying size, mass, and homogeneity, depending on the copolymer composition and solution conditions such as concentration or pH variation, is demonstrated by light scattering and spectroscopic techniques. Furthermore, drug encapsulation properties are studied by incorporating the low bioavailability drug, curcumin, in the nano-aggregate hydrophobic domains, which can also act as a bioimaging agent. The interaction of polyelectrolyte MAA units with model proteins is described to examine protein complexation capacity relevant to enzyme immobilization strategies, as well as explore copolymer self-assembly in simulated physiological media. The results confirm that these copolymer nanosystems could provide competent biocarriers for imaging and drug or protein delivery/enzyme immobilization applications. |
format | Online Article Text |
id | pubmed-10140914 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101409142023-04-29 Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds Balafouti, Anastasia Pispas, Stergios Pharmaceutics Article The synthesis of novel copolymers using one-step reversible addition-fragmentation chain transfer (RAFT) copolymerization of biocompatible methacrylic acid (MAA), lauryl methacrylate (LMA), and difunctional ethylene glycol dimethacrylate (EGDMA) as a branching agent is reported. The obtained amphiphilic hyperbranched H-P(MAA-co-LMA) copolymers are molecularly characterized by size exclusion chromatography (SEC), FTIR, and (1)H-NMR spectroscopy, and subsequently investigated in terms of their self-assembly behavior in aqueous media. The formation of nanoaggregates of varying size, mass, and homogeneity, depending on the copolymer composition and solution conditions such as concentration or pH variation, is demonstrated by light scattering and spectroscopic techniques. Furthermore, drug encapsulation properties are studied by incorporating the low bioavailability drug, curcumin, in the nano-aggregate hydrophobic domains, which can also act as a bioimaging agent. The interaction of polyelectrolyte MAA units with model proteins is described to examine protein complexation capacity relevant to enzyme immobilization strategies, as well as explore copolymer self-assembly in simulated physiological media. The results confirm that these copolymer nanosystems could provide competent biocarriers for imaging and drug or protein delivery/enzyme immobilization applications. MDPI 2023-04-09 /pmc/articles/PMC10140914/ /pubmed/37111683 http://dx.doi.org/10.3390/pharmaceutics15041198 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Balafouti, Anastasia Pispas, Stergios Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds |
title | Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds |
title_full | Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds |
title_fullStr | Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds |
title_full_unstemmed | Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds |
title_short | Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds |
title_sort | hyperbranched copolymers of methacrylic acid and lauryl methacrylate h-p(maa-co-lma): synthetic aspects and interactions with biorelevant compounds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140914/ https://www.ncbi.nlm.nih.gov/pubmed/37111683 http://dx.doi.org/10.3390/pharmaceutics15041198 |
work_keys_str_mv | AT balafoutianastasia hyperbranchedcopolymersofmethacrylicacidandlaurylmethacrylatehpmaacolmasyntheticaspectsandinteractionswithbiorelevantcompounds AT pispasstergios hyperbranchedcopolymersofmethacrylicacidandlaurylmethacrylatehpmaacolmasyntheticaspectsandinteractionswithbiorelevantcompounds |