Cargando…
Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm
Accurately assessing the geometric features of curvilinear structures on images is of paramount importance in many vision-based measurement systems targeting technological fields such as quality control, defect analysis, biomedical, aerial, and satellite imaging. This paper aims at laying the basis...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141127/ https://www.ncbi.nlm.nih.gov/pubmed/37112364 http://dx.doi.org/10.3390/s23084023 |
_version_ | 1785033318391087104 |
---|---|
author | Giulietti, Nicola Chiariotti, Paolo Revel, Gian Marco |
author_facet | Giulietti, Nicola Chiariotti, Paolo Revel, Gian Marco |
author_sort | Giulietti, Nicola |
collection | PubMed |
description | Accurately assessing the geometric features of curvilinear structures on images is of paramount importance in many vision-based measurement systems targeting technological fields such as quality control, defect analysis, biomedical, aerial, and satellite imaging. This paper aims at laying the basis for the development of fully automated vision-based measurement systems targeting the measurement of elements that can be treated as curvilinear structures in the resulting image, such as cracks in concrete elements. In particular, the goal is to overcome the limitation of exploiting the well-known Steger’s ridge detection algorithm in these applications because of the manual identification of the input parameters characterizing the algorithm, which are preventing its extensive use in the measurement field. This paper proposes an approach to make the selection phase of these input parameters fully automated. The metrological performance of the proposed approach is discussed. The method is demonstrated on both synthesized and experimental data. |
format | Online Article Text |
id | pubmed-10141127 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101411272023-04-29 Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm Giulietti, Nicola Chiariotti, Paolo Revel, Gian Marco Sensors (Basel) Article Accurately assessing the geometric features of curvilinear structures on images is of paramount importance in many vision-based measurement systems targeting technological fields such as quality control, defect analysis, biomedical, aerial, and satellite imaging. This paper aims at laying the basis for the development of fully automated vision-based measurement systems targeting the measurement of elements that can be treated as curvilinear structures in the resulting image, such as cracks in concrete elements. In particular, the goal is to overcome the limitation of exploiting the well-known Steger’s ridge detection algorithm in these applications because of the manual identification of the input parameters characterizing the algorithm, which are preventing its extensive use in the measurement field. This paper proposes an approach to make the selection phase of these input parameters fully automated. The metrological performance of the proposed approach is discussed. The method is demonstrated on both synthesized and experimental data. MDPI 2023-04-16 /pmc/articles/PMC10141127/ /pubmed/37112364 http://dx.doi.org/10.3390/s23084023 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Giulietti, Nicola Chiariotti, Paolo Revel, Gian Marco Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm |
title | Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm |
title_full | Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm |
title_fullStr | Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm |
title_full_unstemmed | Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm |
title_short | Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm |
title_sort | automated measurement of geometric features in curvilinear structures exploiting steger’s algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141127/ https://www.ncbi.nlm.nih.gov/pubmed/37112364 http://dx.doi.org/10.3390/s23084023 |
work_keys_str_mv | AT giuliettinicola automatedmeasurementofgeometricfeaturesincurvilinearstructuresexploitingstegersalgorithm AT chiariottipaolo automatedmeasurementofgeometricfeaturesincurvilinearstructuresexploitingstegersalgorithm AT revelgianmarco automatedmeasurementofgeometricfeaturesincurvilinearstructuresexploitingstegersalgorithm |