Cargando…
Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible–IR Spectral Ranges
Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080(TM) photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF(2)...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141173/ https://www.ncbi.nlm.nih.gov/pubmed/37421030 http://dx.doi.org/10.3390/mi14040798 |
_version_ | 1785033329507041280 |
---|---|
author | Mu, Haoran Smith, Daniel Katkus, Tomas Gailevičius, Darius Malinauskas, Mangirdas Nishijima, Yoshiaki Stoddart, Paul R. Ruan, Dong Ryu, Meguya Morikawa, Junko Vasiliev, Taras Lozovski, Valeri Moraru, Daniel Ng, Soon Hock Juodkazis, Saulius |
author_facet | Mu, Haoran Smith, Daniel Katkus, Tomas Gailevičius, Darius Malinauskas, Mangirdas Nishijima, Yoshiaki Stoddart, Paul R. Ruan, Dong Ryu, Meguya Morikawa, Junko Vasiliev, Taras Lozovski, Valeri Moraru, Daniel Ng, Soon Hock Juodkazis, Saulius |
author_sort | Mu, Haoran |
collection | PubMed |
description | Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080(TM) photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF(2) substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2–5 [Formula: see text] m wavelengths since MLAs were only ∼10 [Formula: see text] m high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 [Formula: see text] m-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible–IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved. |
format | Online Article Text |
id | pubmed-10141173 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101411732023-04-29 Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible–IR Spectral Ranges Mu, Haoran Smith, Daniel Katkus, Tomas Gailevičius, Darius Malinauskas, Mangirdas Nishijima, Yoshiaki Stoddart, Paul R. Ruan, Dong Ryu, Meguya Morikawa, Junko Vasiliev, Taras Lozovski, Valeri Moraru, Daniel Ng, Soon Hock Juodkazis, Saulius Micromachines (Basel) Article Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080(TM) photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF(2) substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2–5 [Formula: see text] m wavelengths since MLAs were only ∼10 [Formula: see text] m high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 [Formula: see text] m-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible–IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved. MDPI 2023-03-31 /pmc/articles/PMC10141173/ /pubmed/37421030 http://dx.doi.org/10.3390/mi14040798 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mu, Haoran Smith, Daniel Katkus, Tomas Gailevičius, Darius Malinauskas, Mangirdas Nishijima, Yoshiaki Stoddart, Paul R. Ruan, Dong Ryu, Meguya Morikawa, Junko Vasiliev, Taras Lozovski, Valeri Moraru, Daniel Ng, Soon Hock Juodkazis, Saulius Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible–IR Spectral Ranges |
title | Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible–IR Spectral Ranges |
title_full | Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible–IR Spectral Ranges |
title_fullStr | Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible–IR Spectral Ranges |
title_full_unstemmed | Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible–IR Spectral Ranges |
title_short | Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible–IR Spectral Ranges |
title_sort | polarisation control in arrays of microlenses and gratings: performance in visible–ir spectral ranges |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141173/ https://www.ncbi.nlm.nih.gov/pubmed/37421030 http://dx.doi.org/10.3390/mi14040798 |
work_keys_str_mv | AT muhaoran polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT smithdaniel polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT katkustomas polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT gaileviciusdarius polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT malinauskasmangirdas polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT nishijimayoshiaki polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT stoddartpaulr polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT ruandong polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT ryumeguya polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT morikawajunko polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT vasilievtaras polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT lozovskivaleri polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT morarudaniel polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT ngsoonhock polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges AT juodkazissaulius polarisationcontrolinarraysofmicrolensesandgratingsperformanceinvisibleirspectralranges |