Cargando…

Can Novel Synthetic Disperse Dyes for Polyester Fabric Dyeing Provide Added Value?

In this review, we present preparation methods for a series of new disperse dyes that we have synthesized over the past thirteen years in an environmentally safe and economical way using innovative methods, conventional methods, or using microwave technology as a safe and uniform method of heating....

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Etaibi, Alya M., El-Apasery, Morsy Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141181/
https://www.ncbi.nlm.nih.gov/pubmed/37111991
http://dx.doi.org/10.3390/polym15081845
Descripción
Sumario:In this review, we present preparation methods for a series of new disperse dyes that we have synthesized over the past thirteen years in an environmentally safe and economical way using innovative methods, conventional methods, or using microwave technology as a safe and uniform method of heating. The results showed that in many of the synthetic reactions we carried out, the use of the microwave strategy provides us with the product in minutes and with higher productivity compared to the conventional methods. This strategy provides or may dispense with the use of harmful organic solvents. As an environmentally friendly approach, we used microwave technology in dyeing polyester fabrics at 130 degrees Celsius, and then, we also introduced ultrasound technology in dyeing polyester fabrics at 80 degrees Celsius as an alternative to dyeing methods at the boiling point of water. Here, the goal was not only to save energy, but also to obtain a color depth higher than the color depth that can be obtained by traditional dyeing methods. It is worth noting that obtaining a higher color depth and using less energy means that the amount of dye remaining in the dyeing bath is less, which facilitates the processing of dyeing baths and therefore does not cause harm to the environment. It is necessary after obtaining dyed polyester fabrics to show their fastness properties, so we explained that these dyes have high fastness properties. The next thought was to use nano-metal oxides to treat polyester fabrics in order to provide these fabrics with important properties. Therefore, we present the strategy for treating polyester fabrics with titanium dioxide nano-particles (TiO(2) NPs) or zinc oxide nano-particles (ZnO NPs) in order to enhance their anti-microbial properties, increase their UV protection, increase their light fastness, and enhance their self-cleaning properties. We reviewed the biological activity of all of the newly prepared dyes and showed that most of these dyes possess strong biological activity.