Cargando…

A Deep Learning Approach for Predicting Multiple Sclerosis

This paper proposes a deep learning model based on an artificial neural network with a single hidden layer for predicting the diagnosis of multiple sclerosis. The hidden layer includes a regularization term that prevents overfitting and reduces the model complexity. The purposed learning model achie...

Descripción completa

Detalles Bibliográficos
Autores principales: Ponce de Leon-Sanchez, Edgar Rafael, Dominguez-Ramirez, Omar Arturo, Herrera-Navarro, Ana Marcela, Rodriguez-Resendiz, Juvenal, Paredes-Orta, Carlos, Mendiola-Santibañez, Jorge Domingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141207/
https://www.ncbi.nlm.nih.gov/pubmed/37420982
http://dx.doi.org/10.3390/mi14040749
_version_ 1785033337779257344
author Ponce de Leon-Sanchez, Edgar Rafael
Dominguez-Ramirez, Omar Arturo
Herrera-Navarro, Ana Marcela
Rodriguez-Resendiz, Juvenal
Paredes-Orta, Carlos
Mendiola-Santibañez, Jorge Domingo
author_facet Ponce de Leon-Sanchez, Edgar Rafael
Dominguez-Ramirez, Omar Arturo
Herrera-Navarro, Ana Marcela
Rodriguez-Resendiz, Juvenal
Paredes-Orta, Carlos
Mendiola-Santibañez, Jorge Domingo
author_sort Ponce de Leon-Sanchez, Edgar Rafael
collection PubMed
description This paper proposes a deep learning model based on an artificial neural network with a single hidden layer for predicting the diagnosis of multiple sclerosis. The hidden layer includes a regularization term that prevents overfitting and reduces the model complexity. The purposed learning model achieved higher prediction accuracy and lower loss than four conventional machine learning techniques. A dimensionality reduction method was used to select the most relevant features from 74 gene expression profiles for training the learning models. The analysis of variance test was performed to identify the statistical difference between the mean of the proposed model and the compared classifiers. The experimental results show the effectiveness of the proposed artificial neural network.
format Online
Article
Text
id pubmed-10141207
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101412072023-04-29 A Deep Learning Approach for Predicting Multiple Sclerosis Ponce de Leon-Sanchez, Edgar Rafael Dominguez-Ramirez, Omar Arturo Herrera-Navarro, Ana Marcela Rodriguez-Resendiz, Juvenal Paredes-Orta, Carlos Mendiola-Santibañez, Jorge Domingo Micromachines (Basel) Article This paper proposes a deep learning model based on an artificial neural network with a single hidden layer for predicting the diagnosis of multiple sclerosis. The hidden layer includes a regularization term that prevents overfitting and reduces the model complexity. The purposed learning model achieved higher prediction accuracy and lower loss than four conventional machine learning techniques. A dimensionality reduction method was used to select the most relevant features from 74 gene expression profiles for training the learning models. The analysis of variance test was performed to identify the statistical difference between the mean of the proposed model and the compared classifiers. The experimental results show the effectiveness of the proposed artificial neural network. MDPI 2023-03-29 /pmc/articles/PMC10141207/ /pubmed/37420982 http://dx.doi.org/10.3390/mi14040749 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ponce de Leon-Sanchez, Edgar Rafael
Dominguez-Ramirez, Omar Arturo
Herrera-Navarro, Ana Marcela
Rodriguez-Resendiz, Juvenal
Paredes-Orta, Carlos
Mendiola-Santibañez, Jorge Domingo
A Deep Learning Approach for Predicting Multiple Sclerosis
title A Deep Learning Approach for Predicting Multiple Sclerosis
title_full A Deep Learning Approach for Predicting Multiple Sclerosis
title_fullStr A Deep Learning Approach for Predicting Multiple Sclerosis
title_full_unstemmed A Deep Learning Approach for Predicting Multiple Sclerosis
title_short A Deep Learning Approach for Predicting Multiple Sclerosis
title_sort deep learning approach for predicting multiple sclerosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141207/
https://www.ncbi.nlm.nih.gov/pubmed/37420982
http://dx.doi.org/10.3390/mi14040749
work_keys_str_mv AT poncedeleonsanchezedgarrafael adeeplearningapproachforpredictingmultiplesclerosis
AT dominguezramirezomararturo adeeplearningapproachforpredictingmultiplesclerosis
AT herreranavarroanamarcela adeeplearningapproachforpredictingmultiplesclerosis
AT rodriguezresendizjuvenal adeeplearningapproachforpredictingmultiplesclerosis
AT paredesortacarlos adeeplearningapproachforpredictingmultiplesclerosis
AT mendiolasantibanezjorgedomingo adeeplearningapproachforpredictingmultiplesclerosis
AT poncedeleonsanchezedgarrafael deeplearningapproachforpredictingmultiplesclerosis
AT dominguezramirezomararturo deeplearningapproachforpredictingmultiplesclerosis
AT herreranavarroanamarcela deeplearningapproachforpredictingmultiplesclerosis
AT rodriguezresendizjuvenal deeplearningapproachforpredictingmultiplesclerosis
AT paredesortacarlos deeplearningapproachforpredictingmultiplesclerosis
AT mendiolasantibanezjorgedomingo deeplearningapproachforpredictingmultiplesclerosis