Cargando…
Evolution of Microstructure, Mechanical Properties, and Corrosion Resistance of Mg–2.2Gd–2.2Zn–0.2Ca (wt%) Alloy by Extrusion at Various Temperatures
The current investigation involved casting the Mg–2.2Gd–2.2Zn–0.2Ca (wt%) alloy (GZX220) through permanent mold casting, followed by homogenization at 400 °C for 24 h and extrusion at 250 °C, 300 °C, 350 °C, and 400 °C. Microstructure investigations revealed that α-Mg, Mg–Gd, and Mg–Gd–Zn intermetal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141226/ https://www.ncbi.nlm.nih.gov/pubmed/37109911 http://dx.doi.org/10.3390/ma16083075 |
Sumario: | The current investigation involved casting the Mg–2.2Gd–2.2Zn–0.2Ca (wt%) alloy (GZX220) through permanent mold casting, followed by homogenization at 400 °C for 24 h and extrusion at 250 °C, 300 °C, 350 °C, and 400 °C. Microstructure investigations revealed that α-Mg, Mg–Gd, and Mg–Gd–Zn intermetallic phases were present in the as-cast alloy. Following the homogenization treatment, a majority of these intermetallic particles underwent partial dissolution into the matrix phase. α-Mg grains exhibited a considerable refinement by extrusion due to dynamic recrystallization (DRX). At low extrusion temperatures, higher basal texture intensities were observed. The mechanical properties were remarkably enhanced after the extrusion process. However, a consistent decline in strength was observed with the rise in extrusion temperature. The corrosion performance of the as-cast GZX220 alloy was reduced by homogenization because of the lack of corrosion barrier effect of secondary phases. A significant enhancement of corrosion resistance was achieved by the extrusion process. |
---|