Cargando…
Graph Neural Network Guided Evolutionary Search of Grain Boundaries in 2D Materials
[Image: see text] Grain boundaries (GBs) in two-dimensional (2D) materials are known to dramatically impact material properties ranging from the physical, chemical, mechanical, electronic, and optical, to name a few. Predicting a range of physically realistic GB structures for 2D materials is critic...
Autores principales: | Zhang, Jianan, Koneru, Aditya, Sankaranarayanan, Subramanian K. R. S., Lilley, Carmen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141246/ https://www.ncbi.nlm.nih.gov/pubmed/37040261 http://dx.doi.org/10.1021/acsami.3c01161 |
Ejemplares similares
-
Quantum Graph Neural Network Models for Materials Search
por: Ryu, Ju-Young, et al.
Publicado: (2023) -
Predicting phase behavior of grain boundaries with evolutionary search and machine learning
por: Zhu, Qiang, et al.
Publicado: (2018) -
Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2020) -
Upper-Bound Energy
Minimization to Search for Stable
Functional Materials with Graph Neural Networks
por: Law, Jeffrey N., et al.
Publicado: (2022) -
Graph neural networks for materials science and chemistry
por: Reiser, Patrick, et al.
Publicado: (2022)