Cargando…
Generative Models as an Emerging Paradigm in the Chemical Sciences
[Image: see text] Traditional computational approaches to design chemical species are limited by the need to compute properties for a vast number of candidates, e.g., by discriminative modeling. Therefore, inverse design methods aim to start from the desired property and optimize a corresponding che...
Autores principales: | Anstine, Dylan M., Isayev, Olexandr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141264/ https://www.ncbi.nlm.nih.gov/pubmed/37052978 http://dx.doi.org/10.1021/jacs.2c13467 |
Ejemplares similares
-
Machine Learning
Interatomic Potentials and Long-Range
Physics
por: Anstine, Dylan M., et al.
Publicado: (2023) -
Δ(2) machine learning for reaction property prediction
por: Zhao, Qiyuan, et al.
Publicado: (2023) -
Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network
por: Zubatyuk, Roman, et al.
Publicado: (2019) -
Artificial intelligence-enhanced quantum chemical method with broad applicability
por: Zheng, Peikun, et al.
Publicado: (2021) -
The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions
por: Liu, Zhen, et al.
Publicado: (2023)