Cargando…

Characterization of PcSTT3B as a Key Oligosaccharyltransferase Subunit Involved in N-glycosylation and Its Role in Development and Pathogenicity of Phytophthora capsici

Asparagine (Asn, N)-linked glycosylation is a conserved process and an essential post-translational modification that occurs on the NXT/S motif of the nascent polypeptides in endoplasmic reticulum (ER). The mechanism of N-glycosylation and biological functions of key catalytic enzymes involved in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Tongshan, Ma, Quanhe, Zhang, Fan, Chen, Shanshan, Zhang, Can, Hao, Jianjun, Liu, Xili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141488/
https://www.ncbi.nlm.nih.gov/pubmed/37108663
http://dx.doi.org/10.3390/ijms24087500
Descripción
Sumario:Asparagine (Asn, N)-linked glycosylation is a conserved process and an essential post-translational modification that occurs on the NXT/S motif of the nascent polypeptides in endoplasmic reticulum (ER). The mechanism of N-glycosylation and biological functions of key catalytic enzymes involved in this process are rarely documented for oomycetes. In this study, an N-glycosylation inhibitor tunicamycin (TM) hampered the mycelial growth, sporangial release, and zoospore production of Phytophthora capsici, indicating that N-glycosylation was crucial for oomycete growth development. Among the key catalytic enzymes involved in N-glycosylation, the PcSTT3B gene was characterized by its functions in P. capsici. As a core subunit of the oligosaccharyltransferase (OST) complex, the staurosporine and temperature sensive 3B (STT3B) subunit were critical for the catalytic activity of OST. The PcSTT3B gene has catalytic activity and is highly conservative in P. capsici. By using a CRISPR/Cas9-mediated gene replacement system to delete the PcSTT3B gene, the transformants impaired mycelial growth, sporangial release, zoospore production, and virulence. The PcSTT3B-deleted transformants were more sensitive to an ER stress inducer TM and display low glycoprotein content in the mycelia, suggesting that PcSTT3B was associated with ER stress responses and N-glycosylation. Therefore, PcSTT3B was involved in the development, pathogenicity, and N-glycosylation of P. capsici.