Cargando…

Multi-Mode Model Predictive Control Approach for Steel Billets Reheating Furnaces

In this paper, a unified level 2 Advanced Process Control system for steel billets reheating furnaces is proposed. The system is capable of managing all process conditions that can occur in different types of furnaces, e.g., walking beam and pusher type. A multi-mode Model Predictive Control approac...

Descripción completa

Detalles Bibliográficos
Autores principales: Zanoli, Silvia Maria, Pepe, Crescenzo, Orlietti, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141550/
https://www.ncbi.nlm.nih.gov/pubmed/37112308
http://dx.doi.org/10.3390/s23083966
Descripción
Sumario:In this paper, a unified level 2 Advanced Process Control system for steel billets reheating furnaces is proposed. The system is capable of managing all process conditions that can occur in different types of furnaces, e.g., walking beam and pusher type. A multi-mode Model Predictive Control approach is proposed together with a virtual sensor and a control mode selector. The virtual sensor provides billet tracking, together with updated process and billet information; the control mode selector module defines online the best control mode to be applied. The control mode selector uses a tailored activation matrix and, in each control mode, a different subset of controlled variables and specifications are considered. All furnace conditions (production, planned/unplanned shutdowns/downtimes, and restarts) are managed and optimized. The reliability of the proposed approach is proven by the different installations in various European steel industries. Significant energy efficiency and process control results were obtained after the commissioning of the designed system on the real plants, replacing operators’ manual conduction and/or previous level 2 systems control.