Cargando…

Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins

[Image: see text] Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno-Pescador, Guillermo, Arastoo, Mohammad Reza, Ruhoff, Victoria Thusgaard, Chiantia, Salvatore, Daniels, Robert, Bendix, Poul Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141563/
https://www.ncbi.nlm.nih.gov/pubmed/37040311
http://dx.doi.org/10.1021/acs.nanolett.3c00371
_version_ 1785033411518267392
author Moreno-Pescador, Guillermo
Arastoo, Mohammad Reza
Ruhoff, Victoria Thusgaard
Chiantia, Salvatore
Daniels, Robert
Bendix, Poul Martin
author_facet Moreno-Pescador, Guillermo
Arastoo, Mohammad Reza
Ruhoff, Victoria Thusgaard
Chiantia, Salvatore
Daniels, Robert
Bendix, Poul Martin
author_sort Moreno-Pescador, Guillermo
collection PubMed
description [Image: see text] Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker.
format Online
Article
Text
id pubmed-10141563
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101415632023-04-29 Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins Moreno-Pescador, Guillermo Arastoo, Mohammad Reza Ruhoff, Victoria Thusgaard Chiantia, Salvatore Daniels, Robert Bendix, Poul Martin Nano Lett [Image: see text] Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker. American Chemical Society 2023-04-11 /pmc/articles/PMC10141563/ /pubmed/37040311 http://dx.doi.org/10.1021/acs.nanolett.3c00371 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Moreno-Pescador, Guillermo
Arastoo, Mohammad Reza
Ruhoff, Victoria Thusgaard
Chiantia, Salvatore
Daniels, Robert
Bendix, Poul Martin
Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins
title Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins
title_full Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins
title_fullStr Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins
title_full_unstemmed Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins
title_short Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins
title_sort thermoplasmonic vesicle fusion reveals membrane phase segregation of influenza spike proteins
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141563/
https://www.ncbi.nlm.nih.gov/pubmed/37040311
http://dx.doi.org/10.1021/acs.nanolett.3c00371
work_keys_str_mv AT morenopescadorguillermo thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins
AT arastoomohammadreza thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins
AT ruhoffvictoriathusgaard thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins
AT chiantiasalvatore thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins
AT danielsrobert thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins
AT bendixpoulmartin thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins