Cargando…
Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins
[Image: see text] Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141563/ https://www.ncbi.nlm.nih.gov/pubmed/37040311 http://dx.doi.org/10.1021/acs.nanolett.3c00371 |
_version_ | 1785033411518267392 |
---|---|
author | Moreno-Pescador, Guillermo Arastoo, Mohammad Reza Ruhoff, Victoria Thusgaard Chiantia, Salvatore Daniels, Robert Bendix, Poul Martin |
author_facet | Moreno-Pescador, Guillermo Arastoo, Mohammad Reza Ruhoff, Victoria Thusgaard Chiantia, Salvatore Daniels, Robert Bendix, Poul Martin |
author_sort | Moreno-Pescador, Guillermo |
collection | PubMed |
description | [Image: see text] Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker. |
format | Online Article Text |
id | pubmed-10141563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101415632023-04-29 Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins Moreno-Pescador, Guillermo Arastoo, Mohammad Reza Ruhoff, Victoria Thusgaard Chiantia, Salvatore Daniels, Robert Bendix, Poul Martin Nano Lett [Image: see text] Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker. American Chemical Society 2023-04-11 /pmc/articles/PMC10141563/ /pubmed/37040311 http://dx.doi.org/10.1021/acs.nanolett.3c00371 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Moreno-Pescador, Guillermo Arastoo, Mohammad Reza Ruhoff, Victoria Thusgaard Chiantia, Salvatore Daniels, Robert Bendix, Poul Martin Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins |
title | Thermoplasmonic
Vesicle Fusion Reveals Membrane Phase
Segregation of Influenza Spike Proteins |
title_full | Thermoplasmonic
Vesicle Fusion Reveals Membrane Phase
Segregation of Influenza Spike Proteins |
title_fullStr | Thermoplasmonic
Vesicle Fusion Reveals Membrane Phase
Segregation of Influenza Spike Proteins |
title_full_unstemmed | Thermoplasmonic
Vesicle Fusion Reveals Membrane Phase
Segregation of Influenza Spike Proteins |
title_short | Thermoplasmonic
Vesicle Fusion Reveals Membrane Phase
Segregation of Influenza Spike Proteins |
title_sort | thermoplasmonic
vesicle fusion reveals membrane phase
segregation of influenza spike proteins |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141563/ https://www.ncbi.nlm.nih.gov/pubmed/37040311 http://dx.doi.org/10.1021/acs.nanolett.3c00371 |
work_keys_str_mv | AT morenopescadorguillermo thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins AT arastoomohammadreza thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins AT ruhoffvictoriathusgaard thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins AT chiantiasalvatore thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins AT danielsrobert thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins AT bendixpoulmartin thermoplasmonicvesiclefusionrevealsmembranephasesegregationofinfluenzaspikeproteins |