Cargando…

Magnetite Nanoparticles and Carbon Nanotubes for Improving the Operation of Mesophilic Anaerobic Digesters

Anaerobic waste processing contributes to the development of the bioenergy sector and solves environmental problems. To date, many technologies have been developed for increasing the rate of the anaerobic digestion process and yield of methane. However, new technological advancements are required to...

Descripción completa

Detalles Bibliográficos
Autores principales: Ziganshina, Elvira E., Ziganshin, Ayrat M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141571/
https://www.ncbi.nlm.nih.gov/pubmed/37110361
http://dx.doi.org/10.3390/microorganisms11040938
Descripción
Sumario:Anaerobic waste processing contributes to the development of the bioenergy sector and solves environmental problems. To date, many technologies have been developed for increasing the rate of the anaerobic digestion process and yield of methane. However, new technological advancements are required to eliminate biogas production inefficiencies. The performance of anaerobic digesters can be improved by adding conductive materials. In this study, the effects of the separate and shared use of magnetite nanoparticles and carbon nanotubes in anaerobic digesters converting high-nitrogen-containing waste, chicken manure, were investigated. The tested nanomaterials accelerated the methane production and increased the decomposition of products from the acidogenesis and acetogenesis stages. The combined use of magnetite nanoparticles and carbon nanotubes gave better results compared to using them alone or without them. Members of the bacterial classes Bacteroidia, Clostridia, and Actinobacteria were detected at higher levels in the anaerobic digesters, but in different proportions depending on the experiment. Representatives of the genera Methanosarcina, Methanobacterium, and Methanothrix were mainly detected within the methanogenic communities in the anaerobic digesters. The present study provides new data for supporting the anaerobic treatment of substrates with a high content of inhibitory compounds, such as chicken wastes.