Cargando…
Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis
Gearboxes are one of the most widely used speed and power transfer elements in rotating machinery. Highly accurate compound fault diagnosis of gearboxes is of great significance for the safe and reliable operation of rotating machinery systems. However, traditional compound fault diagnosis methods t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141628/ https://www.ncbi.nlm.nih.gov/pubmed/37112168 http://dx.doi.org/10.3390/s23083827 |
_version_ | 1785033425914167296 |
---|---|
author | Xu, Qinghong Jiang, Hong Zhang, Xiangfeng Li, Jun Chen, Lan |
author_facet | Xu, Qinghong Jiang, Hong Zhang, Xiangfeng Li, Jun Chen, Lan |
author_sort | Xu, Qinghong |
collection | PubMed |
description | Gearboxes are one of the most widely used speed and power transfer elements in rotating machinery. Highly accurate compound fault diagnosis of gearboxes is of great significance for the safe and reliable operation of rotating machinery systems. However, traditional compound fault diagnosis methods treat compound faults as an independent fault mode in the diagnosis process and cannot decouple them into multiple single faults. To address this problem, this paper proposes a gearbox compound fault diagnosis method. First, a multiscale convolutional neural network (MSCNN) is used as a feature learning model, which can effectively mine the compound fault information from vibration signals. Then, an improved hybrid attention module, named the channel–space attention module (CSAM), is proposed. It is embedded into the MSCNN to assign weights to multiscale features for enhancing the feature differentiation processing ability of the MSCNN. The new neural network is named CSAM-MSCNN. Finally, a multilabel classifier is used to output single or multiple labels for recognizing single or compound faults. The effectiveness of the method was verified with two gearbox datasets. The results show that the method possesses higher accuracy and stability than other models for gearbox compound fault diagnosis. |
format | Online Article Text |
id | pubmed-10141628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101416282023-04-29 Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis Xu, Qinghong Jiang, Hong Zhang, Xiangfeng Li, Jun Chen, Lan Sensors (Basel) Article Gearboxes are one of the most widely used speed and power transfer elements in rotating machinery. Highly accurate compound fault diagnosis of gearboxes is of great significance for the safe and reliable operation of rotating machinery systems. However, traditional compound fault diagnosis methods treat compound faults as an independent fault mode in the diagnosis process and cannot decouple them into multiple single faults. To address this problem, this paper proposes a gearbox compound fault diagnosis method. First, a multiscale convolutional neural network (MSCNN) is used as a feature learning model, which can effectively mine the compound fault information from vibration signals. Then, an improved hybrid attention module, named the channel–space attention module (CSAM), is proposed. It is embedded into the MSCNN to assign weights to multiscale features for enhancing the feature differentiation processing ability of the MSCNN. The new neural network is named CSAM-MSCNN. Finally, a multilabel classifier is used to output single or multiple labels for recognizing single or compound faults. The effectiveness of the method was verified with two gearbox datasets. The results show that the method possesses higher accuracy and stability than other models for gearbox compound fault diagnosis. MDPI 2023-04-08 /pmc/articles/PMC10141628/ /pubmed/37112168 http://dx.doi.org/10.3390/s23083827 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Qinghong Jiang, Hong Zhang, Xiangfeng Li, Jun Chen, Lan Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis |
title | Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis |
title_full | Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis |
title_fullStr | Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis |
title_full_unstemmed | Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis |
title_short | Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis |
title_sort | multiscale convolutional neural network based on channel space attention for gearbox compound fault diagnosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141628/ https://www.ncbi.nlm.nih.gov/pubmed/37112168 http://dx.doi.org/10.3390/s23083827 |
work_keys_str_mv | AT xuqinghong multiscaleconvolutionalneuralnetworkbasedonchannelspaceattentionforgearboxcompoundfaultdiagnosis AT jianghong multiscaleconvolutionalneuralnetworkbasedonchannelspaceattentionforgearboxcompoundfaultdiagnosis AT zhangxiangfeng multiscaleconvolutionalneuralnetworkbasedonchannelspaceattentionforgearboxcompoundfaultdiagnosis AT lijun multiscaleconvolutionalneuralnetworkbasedonchannelspaceattentionforgearboxcompoundfaultdiagnosis AT chenlan multiscaleconvolutionalneuralnetworkbasedonchannelspaceattentionforgearboxcompoundfaultdiagnosis |