Cargando…

Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation

[Image: see text] Nucleic acid detection methods based on CRISPR and isothermal amplification techniques show great potential for point-of-care diagnostic applications. However, most current methods rely on fluorescent or lateral flow assay readout, requiring external excitation or postamplification...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Veer, Harmen J., van Aalen, Eva A., Michielsen, Claire M. S., Hanckmann, Eva T. L., Deckers, Jeroen, van Borren, Marcel M. G. J., Flipse, Jacky, Loonen, Anne J. M., Schoeber, Joost P. H., Merkx, Maarten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141630/
https://www.ncbi.nlm.nih.gov/pubmed/37122471
http://dx.doi.org/10.1021/acscentsci.2c01467
_version_ 1785033426406998016
author van der Veer, Harmen J.
van Aalen, Eva A.
Michielsen, Claire M. S.
Hanckmann, Eva T. L.
Deckers, Jeroen
van Borren, Marcel M. G. J.
Flipse, Jacky
Loonen, Anne J. M.
Schoeber, Joost P. H.
Merkx, Maarten
author_facet van der Veer, Harmen J.
van Aalen, Eva A.
Michielsen, Claire M. S.
Hanckmann, Eva T. L.
Deckers, Jeroen
van Borren, Marcel M. G. J.
Flipse, Jacky
Loonen, Anne J. M.
Schoeber, Joost P. H.
Merkx, Maarten
author_sort van der Veer, Harmen J.
collection PubMed
description [Image: see text] Nucleic acid detection methods based on CRISPR and isothermal amplification techniques show great potential for point-of-care diagnostic applications. However, most current methods rely on fluorescent or lateral flow assay readout, requiring external excitation or postamplification reaction transfer. Here, we developed a bioluminescent nucleic acid sensor (LUNAS) platform in which target dsDNA is sequence-specifically detected by a pair of dCas9-based probes mediating split NanoLuc luciferase complementation. LUNAS is easily integrated with recombinase polymerase amplification (RPA), providing attomolar sensitivity in a rapid one-pot assay. A calibrator luciferase is included for a robust ratiometric readout, enabling real-time monitoring of the RPA reaction using a simple digital camera. We designed an RT-RPA-LUNAS assay that allows SARS-CoV-2 RNA detection without the need for cumbersome RNA isolation and demonstrated its diagnostic performance for COVID-19 patient nasopharyngeal swab samples. Detection of SARS-CoV-2 from samples with viral RNA loads of ∼200 cp/μL was achieved within ∼20 min, showing that RPA-LUNAS is attractive for point-of-care infectious disease testing.
format Online
Article
Text
id pubmed-10141630
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101416302023-04-29 Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation van der Veer, Harmen J. van Aalen, Eva A. Michielsen, Claire M. S. Hanckmann, Eva T. L. Deckers, Jeroen van Borren, Marcel M. G. J. Flipse, Jacky Loonen, Anne J. M. Schoeber, Joost P. H. Merkx, Maarten ACS Cent Sci [Image: see text] Nucleic acid detection methods based on CRISPR and isothermal amplification techniques show great potential for point-of-care diagnostic applications. However, most current methods rely on fluorescent or lateral flow assay readout, requiring external excitation or postamplification reaction transfer. Here, we developed a bioluminescent nucleic acid sensor (LUNAS) platform in which target dsDNA is sequence-specifically detected by a pair of dCas9-based probes mediating split NanoLuc luciferase complementation. LUNAS is easily integrated with recombinase polymerase amplification (RPA), providing attomolar sensitivity in a rapid one-pot assay. A calibrator luciferase is included for a robust ratiometric readout, enabling real-time monitoring of the RPA reaction using a simple digital camera. We designed an RT-RPA-LUNAS assay that allows SARS-CoV-2 RNA detection without the need for cumbersome RNA isolation and demonstrated its diagnostic performance for COVID-19 patient nasopharyngeal swab samples. Detection of SARS-CoV-2 from samples with viral RNA loads of ∼200 cp/μL was achieved within ∼20 min, showing that RPA-LUNAS is attractive for point-of-care infectious disease testing. American Chemical Society 2023-03-15 /pmc/articles/PMC10141630/ /pubmed/37122471 http://dx.doi.org/10.1021/acscentsci.2c01467 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle van der Veer, Harmen J.
van Aalen, Eva A.
Michielsen, Claire M. S.
Hanckmann, Eva T. L.
Deckers, Jeroen
van Borren, Marcel M. G. J.
Flipse, Jacky
Loonen, Anne J. M.
Schoeber, Joost P. H.
Merkx, Maarten
Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation
title Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation
title_full Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation
title_fullStr Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation
title_full_unstemmed Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation
title_short Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation
title_sort glow-in-the-dark infectious disease diagnostics using crispr-cas9-based split luciferase complementation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141630/
https://www.ncbi.nlm.nih.gov/pubmed/37122471
http://dx.doi.org/10.1021/acscentsci.2c01467
work_keys_str_mv AT vanderveerharmenj glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT vanaalenevaa glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT michielsenclairems glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT hanckmannevatl glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT deckersjeroen glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT vanborrenmarcelmgj glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT flipsejacky glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT loonenannejm glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT schoeberjoostph glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation
AT merkxmaarten glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation