Cargando…
Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation
[Image: see text] Nucleic acid detection methods based on CRISPR and isothermal amplification techniques show great potential for point-of-care diagnostic applications. However, most current methods rely on fluorescent or lateral flow assay readout, requiring external excitation or postamplification...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141630/ https://www.ncbi.nlm.nih.gov/pubmed/37122471 http://dx.doi.org/10.1021/acscentsci.2c01467 |
_version_ | 1785033426406998016 |
---|---|
author | van der Veer, Harmen J. van Aalen, Eva A. Michielsen, Claire M. S. Hanckmann, Eva T. L. Deckers, Jeroen van Borren, Marcel M. G. J. Flipse, Jacky Loonen, Anne J. M. Schoeber, Joost P. H. Merkx, Maarten |
author_facet | van der Veer, Harmen J. van Aalen, Eva A. Michielsen, Claire M. S. Hanckmann, Eva T. L. Deckers, Jeroen van Borren, Marcel M. G. J. Flipse, Jacky Loonen, Anne J. M. Schoeber, Joost P. H. Merkx, Maarten |
author_sort | van der Veer, Harmen J. |
collection | PubMed |
description | [Image: see text] Nucleic acid detection methods based on CRISPR and isothermal amplification techniques show great potential for point-of-care diagnostic applications. However, most current methods rely on fluorescent or lateral flow assay readout, requiring external excitation or postamplification reaction transfer. Here, we developed a bioluminescent nucleic acid sensor (LUNAS) platform in which target dsDNA is sequence-specifically detected by a pair of dCas9-based probes mediating split NanoLuc luciferase complementation. LUNAS is easily integrated with recombinase polymerase amplification (RPA), providing attomolar sensitivity in a rapid one-pot assay. A calibrator luciferase is included for a robust ratiometric readout, enabling real-time monitoring of the RPA reaction using a simple digital camera. We designed an RT-RPA-LUNAS assay that allows SARS-CoV-2 RNA detection without the need for cumbersome RNA isolation and demonstrated its diagnostic performance for COVID-19 patient nasopharyngeal swab samples. Detection of SARS-CoV-2 from samples with viral RNA loads of ∼200 cp/μL was achieved within ∼20 min, showing that RPA-LUNAS is attractive for point-of-care infectious disease testing. |
format | Online Article Text |
id | pubmed-10141630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101416302023-04-29 Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation van der Veer, Harmen J. van Aalen, Eva A. Michielsen, Claire M. S. Hanckmann, Eva T. L. Deckers, Jeroen van Borren, Marcel M. G. J. Flipse, Jacky Loonen, Anne J. M. Schoeber, Joost P. H. Merkx, Maarten ACS Cent Sci [Image: see text] Nucleic acid detection methods based on CRISPR and isothermal amplification techniques show great potential for point-of-care diagnostic applications. However, most current methods rely on fluorescent or lateral flow assay readout, requiring external excitation or postamplification reaction transfer. Here, we developed a bioluminescent nucleic acid sensor (LUNAS) platform in which target dsDNA is sequence-specifically detected by a pair of dCas9-based probes mediating split NanoLuc luciferase complementation. LUNAS is easily integrated with recombinase polymerase amplification (RPA), providing attomolar sensitivity in a rapid one-pot assay. A calibrator luciferase is included for a robust ratiometric readout, enabling real-time monitoring of the RPA reaction using a simple digital camera. We designed an RT-RPA-LUNAS assay that allows SARS-CoV-2 RNA detection without the need for cumbersome RNA isolation and demonstrated its diagnostic performance for COVID-19 patient nasopharyngeal swab samples. Detection of SARS-CoV-2 from samples with viral RNA loads of ∼200 cp/μL was achieved within ∼20 min, showing that RPA-LUNAS is attractive for point-of-care infectious disease testing. American Chemical Society 2023-03-15 /pmc/articles/PMC10141630/ /pubmed/37122471 http://dx.doi.org/10.1021/acscentsci.2c01467 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | van der Veer, Harmen J. van Aalen, Eva A. Michielsen, Claire M. S. Hanckmann, Eva T. L. Deckers, Jeroen van Borren, Marcel M. G. J. Flipse, Jacky Loonen, Anne J. M. Schoeber, Joost P. H. Merkx, Maarten Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation |
title | Glow-in-the-Dark
Infectious Disease Diagnostics Using
CRISPR-Cas9-Based Split Luciferase Complementation |
title_full | Glow-in-the-Dark
Infectious Disease Diagnostics Using
CRISPR-Cas9-Based Split Luciferase Complementation |
title_fullStr | Glow-in-the-Dark
Infectious Disease Diagnostics Using
CRISPR-Cas9-Based Split Luciferase Complementation |
title_full_unstemmed | Glow-in-the-Dark
Infectious Disease Diagnostics Using
CRISPR-Cas9-Based Split Luciferase Complementation |
title_short | Glow-in-the-Dark
Infectious Disease Diagnostics Using
CRISPR-Cas9-Based Split Luciferase Complementation |
title_sort | glow-in-the-dark
infectious disease diagnostics using
crispr-cas9-based split luciferase complementation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141630/ https://www.ncbi.nlm.nih.gov/pubmed/37122471 http://dx.doi.org/10.1021/acscentsci.2c01467 |
work_keys_str_mv | AT vanderveerharmenj glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT vanaalenevaa glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT michielsenclairems glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT hanckmannevatl glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT deckersjeroen glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT vanborrenmarcelmgj glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT flipsejacky glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT loonenannejm glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT schoeberjoostph glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation AT merkxmaarten glowinthedarkinfectiousdiseasediagnosticsusingcrisprcas9basedsplitluciferasecomplementation |