Cargando…
Medical image segmentation based on self-supervised hybrid fusion network
Automatic segmentation of medical images has been a hot research topic in the field of deep learning in recent years, and achieving accurate segmentation of medical images is conducive to breakthroughs in disease diagnosis, monitoring, and treatment. In medicine, MRI imaging technology is often used...
Autores principales: | Zhao, Liang, Jia, Chaoran, Ma, Jiajun, Shao, Yu, Liu, Zhuo, Yuan, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141651/ https://www.ncbi.nlm.nih.gov/pubmed/37124508 http://dx.doi.org/10.3389/fonc.2023.1109786 |
Ejemplares similares
-
MM-UNet: A multimodality brain tumor segmentation network in MRI images
por: Zhao, Liang, et al.
Publicado: (2022) -
iU-Net: a hybrid structured network with a novel feature fusion approach for medical image segmentation
por: Jiang, Yun, et al.
Publicado: (2023) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018) -
Multi-Task Deep Supervision on Attention R2U-Net for Brain Tumor Segmentation
por: Ma, Shiqiang, et al.
Publicado: (2021) -
Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis
por: Yang, Ruixin, et al.
Publicado: (2021)