Cargando…
Research on Waste Combustion in the Aspect of Mercury Emissions
The topic of waste combustion/co-combustion is critical, given the increasingly restrictive legal regulations regarding its environmental aspects. In this paper, the authors present the test results of selected fuels of different compositions: hard coal, coal sludge, coke waste, sewage sludge, paper...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141730/ https://www.ncbi.nlm.nih.gov/pubmed/37110048 http://dx.doi.org/10.3390/ma16083213 |
Sumario: | The topic of waste combustion/co-combustion is critical, given the increasingly restrictive legal regulations regarding its environmental aspects. In this paper, the authors present the test results of selected fuels of different compositions: hard coal, coal sludge, coke waste, sewage sludge, paper waste, biomass waste and polymer waste. The authors conducted a proximate and ultimate analysis of the materials and mercury content in them and their ashes. An interesting element of the paper was the chemical analysis of the XRF of the fuels. The authors conducted the preliminary combustion research using a new research bench. The authors provide a comparative analysis of pollutant emissions—especially mercury emission—during the combustion of the material; this is an innovative element of this paper. The authors state that coke waste and sewage sludge are distinguished by their high mercury content. The value of Hg emission during the combustion depends on the initial mercury content in the waste. The results of the combustion tests showed the adequacy of mercury release compared to the emissions of other compounds considered. Small amounts of mercury were found in waste ashes. The addition of a polymer to 10% of coal fuels leads to a reduction in mercury emissions in exhaust gases. |
---|