Cargando…

ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture

Mixed matrix membranes (MMMs) with nano-fillers dispersed in polymer matrix have been proposed as alternative pervaporation membrane materials. They possess both promising selectivity benefiting from the fillers and economical processing capabilities of polymers. ZIF-67 was synthesized and incorpora...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Guanglu, Lv, Jie, Chen, Mohan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141737/
https://www.ncbi.nlm.nih.gov/pubmed/37103816
http://dx.doi.org/10.3390/membranes13040389
_version_ 1785033450396319744
author Han, Guanglu
Lv, Jie
Chen, Mohan
author_facet Han, Guanglu
Lv, Jie
Chen, Mohan
author_sort Han, Guanglu
collection PubMed
description Mixed matrix membranes (MMMs) with nano-fillers dispersed in polymer matrix have been proposed as alternative pervaporation membrane materials. They possess both promising selectivity benefiting from the fillers and economical processing capabilities of polymers. ZIF-67 was synthesized and incorporated into the sulfonated poly (aryl ether sulfone) (SPES) matrix to prepare SPES/ZIF-67 mixed matrix membranes with different ZIF-67 mass fractions. The as-prepared membranes were used for pervaporation separation of methanol/methyl tert-butyl ether mixtures. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and laser particle size analysis results show that ZIF-67 is successfully synthesized, and the particle size is mainly between 280 nm and 400 nm. The membranes were characterized by SEM, atomic force microscope (AFM), water contact angle, thermogravimetric analysis (TGA), mechanical property testing and positron annihilation technique (PAT), sorption and swelling experiments, and the pervaporation performance was also investigated. The results reveal that ZIF-67 particles disperse uniformly in the SPES matrix. The roughness and hydrophilicity are enhanced by ZIF-67 exposed on the membrane surface. The mixed matrix membrane has good thermal stability and mechanical properties, which can meet the requirements of pervaporation operation. The introduction of ZIF-67 effectively regulates the free volume parameters of the mixed matrix membrane. With increasing ZIF-67 mass fraction, the cavity radius and free volume fraction increase gradually. When the operating temperature is 40 °C, the flow rate is 50 L·h(−1) and the mass fraction of methanol in feed is 15%, the mixed matrix membrane with ZIF-67 mass fraction of 20% shows the best comprehensive pervaporation performance. The total flux and separation factor reach 0.297 kg·m(−2)·h(−1) and 2123, respectively.
format Online
Article
Text
id pubmed-10141737
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101417372023-04-29 ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture Han, Guanglu Lv, Jie Chen, Mohan Membranes (Basel) Article Mixed matrix membranes (MMMs) with nano-fillers dispersed in polymer matrix have been proposed as alternative pervaporation membrane materials. They possess both promising selectivity benefiting from the fillers and economical processing capabilities of polymers. ZIF-67 was synthesized and incorporated into the sulfonated poly (aryl ether sulfone) (SPES) matrix to prepare SPES/ZIF-67 mixed matrix membranes with different ZIF-67 mass fractions. The as-prepared membranes were used for pervaporation separation of methanol/methyl tert-butyl ether mixtures. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and laser particle size analysis results show that ZIF-67 is successfully synthesized, and the particle size is mainly between 280 nm and 400 nm. The membranes were characterized by SEM, atomic force microscope (AFM), water contact angle, thermogravimetric analysis (TGA), mechanical property testing and positron annihilation technique (PAT), sorption and swelling experiments, and the pervaporation performance was also investigated. The results reveal that ZIF-67 particles disperse uniformly in the SPES matrix. The roughness and hydrophilicity are enhanced by ZIF-67 exposed on the membrane surface. The mixed matrix membrane has good thermal stability and mechanical properties, which can meet the requirements of pervaporation operation. The introduction of ZIF-67 effectively regulates the free volume parameters of the mixed matrix membrane. With increasing ZIF-67 mass fraction, the cavity radius and free volume fraction increase gradually. When the operating temperature is 40 °C, the flow rate is 50 L·h(−1) and the mass fraction of methanol in feed is 15%, the mixed matrix membrane with ZIF-67 mass fraction of 20% shows the best comprehensive pervaporation performance. The total flux and separation factor reach 0.297 kg·m(−2)·h(−1) and 2123, respectively. MDPI 2023-03-29 /pmc/articles/PMC10141737/ /pubmed/37103816 http://dx.doi.org/10.3390/membranes13040389 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Han, Guanglu
Lv, Jie
Chen, Mohan
ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture
title ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture
title_full ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture
title_fullStr ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture
title_full_unstemmed ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture
title_short ZIF-67 Incorporated Sulfonated Poly (Aryl Ether Sulfone) Mixed Matrix Membranes for Pervaporation Separation of Methanol/Methyl Tert-Butyl Ether Mixture
title_sort zif-67 incorporated sulfonated poly (aryl ether sulfone) mixed matrix membranes for pervaporation separation of methanol/methyl tert-butyl ether mixture
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141737/
https://www.ncbi.nlm.nih.gov/pubmed/37103816
http://dx.doi.org/10.3390/membranes13040389
work_keys_str_mv AT hanguanglu zif67incorporatedsulfonatedpolyarylethersulfonemixedmatrixmembranesforpervaporationseparationofmethanolmethyltertbutylethermixture
AT lvjie zif67incorporatedsulfonatedpolyarylethersulfonemixedmatrixmembranesforpervaporationseparationofmethanolmethyltertbutylethermixture
AT chenmohan zif67incorporatedsulfonatedpolyarylethersulfonemixedmatrixmembranesforpervaporationseparationofmethanolmethyltertbutylethermixture