Cargando…
Identifying the predictors of severe psychological distress by auto-machine learning methods
Social stress in daily life and the COVID-19 pandemic have greatly impacted the mental health of the population. Early detection of a predisposition to severe psychological distress is essential for timely interventions. This paper analyzed 4036 samples participating in the 2019–2020 National Health...
Autores principales: | Zhang, Xiaomei, Ren, Haoying, Gao, Lei, Shia, Ben-Chang, Chen, Ming-Chih, Ye, Linglong, Wang, Ruojia, Qin, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141788/ https://www.ncbi.nlm.nih.gov/pubmed/37152204 http://dx.doi.org/10.1016/j.imu.2023.101258 |
Ejemplares similares
-
Using the H2O Automatic Machine Learning Algorithms to Identify Predictors of Web-Based Medical Record Nonuse Among Patients in a Data-Rich Environment: Mixed Methods Study
por: Chen, Yang, et al.
Publicado: (2023) -
Identifying Predictors of Psychological Distress During COVID-19: A Machine Learning Approach
por: Prout, Tracy A., et al.
Publicado: (2020) -
Association Between Social Media Use and Cancer Screening Awareness and Behavior for People Without a Cancer Diagnosis: Matched Cohort Study
por: Qin, Lei, et al.
Publicado: (2021) -
Predictors of Serious Psychological Distress in an Urban Population
por: Marko, Dritana, et al.
Publicado: (2014) -
Multidimensional Health Groups and Healthcare Utilization Among Elderly Chinese: Based on the 2014 CLHLS Dataset
por: Ye, Linglong, et al.
Publicado: (2019)