Cargando…
Detecting deception using machine learning with facial expressions and pulse rate
Given the ongoing COVID-19 pandemic, remote interviews have become an increasingly popular approach in many fields. For example, a survey by the HR Research Institute (PCR Institute in Survey on hiring activities for graduates of 2021 and 2022. https://www.hrpro.co.jp/research_detail.php?r_no=273. A...
Autores principales: | Tsuchiya, Kento, Hatano, Ryo, Nishiyama, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Japan
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141812/ https://www.ncbi.nlm.nih.gov/pubmed/37360281 http://dx.doi.org/10.1007/s10015-023-00869-9 |
Ejemplares similares
-
Distraction detection of lectures in e-learning using machine learning based on human facial features and postural information
por: Betto, Iku, et al.
Publicado: (2022) -
Market prediction using machine learning based on social media specific features
por: Sekioka, Satoshi, et al.
Publicado: (2023) -
Deception detection with machine learning: A systematic review and statistical analysis
por: Constâncio, Alex Sebastião, et al.
Publicado: (2023) -
Facial psychophysiology in forensic investigation: A novel idea for deception detection
por: Samuel, Selwin Gabriel, et al.
Publicado: (2019) -
Veracity judgement, not accuracy: Reconsidering the role of facial expressions, empathy, and emotion recognition training on deception detection
por: Zloteanu, Mircea, et al.
Publicado: (2020)