Cargando…
From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure
Imatinib is a targeted cancer therapy that has significantly improved the care of patients with chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, it has been shown that the recommended dosages of imatinib are associated with trough plasma concentration (Cmin) lower t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142039/ https://www.ncbi.nlm.nih.gov/pubmed/37111566 http://dx.doi.org/10.3390/pharmaceutics15041081 |
_version_ | 1785033518045200384 |
---|---|
author | Goutelle, Sylvain Guidi, Monia Gotta, Verena Csajka, Chantal Buclin, Thierry Widmer, Nicolas |
author_facet | Goutelle, Sylvain Guidi, Monia Gotta, Verena Csajka, Chantal Buclin, Thierry Widmer, Nicolas |
author_sort | Goutelle, Sylvain |
collection | PubMed |
description | Imatinib is a targeted cancer therapy that has significantly improved the care of patients with chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, it has been shown that the recommended dosages of imatinib are associated with trough plasma concentration (Cmin) lower than the target value in many patients. The aims of this study were to design a novel model-based dosing approach for imatinib and to compare the performance of this method with that of other dosing methods. Three target interval dosing (TID) methods were developed based on a previously published PK model to optimize the achievement of a target Cmin interval or minimize underexposure. We compared the performance of those methods to that of traditional model-based target concentration dosing (TCD) as well as fixed-dose regimen using simulated patients (n = 800) as well as real patients’ data (n = 85). Both TID and TCD model-based approaches were effective with about 65% of Cmin achieving the target imatinib Cmin interval of 1000–2000 ng/mL in 800 simulated patients and more than 75% using real data. The TID approach could also minimize underexposure. The standard 400 mg/24 h dosage of imatinib was associated with only 29% and 16.5% of target attainment in simulated and real conditions, respectively. Some other fixed-dose regimens performed better but could not minimize over- or underexposure. Model-based, goal-oriented methods can improve initial dosing of imatinib. Combined with subsequent TDM, these approaches are a rational basis for precision dosing of imatinib and other drugs with exposure–response relationships in oncology. |
format | Online Article Text |
id | pubmed-10142039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101420392023-04-29 From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure Goutelle, Sylvain Guidi, Monia Gotta, Verena Csajka, Chantal Buclin, Thierry Widmer, Nicolas Pharmaceutics Article Imatinib is a targeted cancer therapy that has significantly improved the care of patients with chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, it has been shown that the recommended dosages of imatinib are associated with trough plasma concentration (Cmin) lower than the target value in many patients. The aims of this study were to design a novel model-based dosing approach for imatinib and to compare the performance of this method with that of other dosing methods. Three target interval dosing (TID) methods were developed based on a previously published PK model to optimize the achievement of a target Cmin interval or minimize underexposure. We compared the performance of those methods to that of traditional model-based target concentration dosing (TCD) as well as fixed-dose regimen using simulated patients (n = 800) as well as real patients’ data (n = 85). Both TID and TCD model-based approaches were effective with about 65% of Cmin achieving the target imatinib Cmin interval of 1000–2000 ng/mL in 800 simulated patients and more than 75% using real data. The TID approach could also minimize underexposure. The standard 400 mg/24 h dosage of imatinib was associated with only 29% and 16.5% of target attainment in simulated and real conditions, respectively. Some other fixed-dose regimens performed better but could not minimize over- or underexposure. Model-based, goal-oriented methods can improve initial dosing of imatinib. Combined with subsequent TDM, these approaches are a rational basis for precision dosing of imatinib and other drugs with exposure–response relationships in oncology. MDPI 2023-03-28 /pmc/articles/PMC10142039/ /pubmed/37111566 http://dx.doi.org/10.3390/pharmaceutics15041081 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Goutelle, Sylvain Guidi, Monia Gotta, Verena Csajka, Chantal Buclin, Thierry Widmer, Nicolas From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure |
title | From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure |
title_full | From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure |
title_fullStr | From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure |
title_full_unstemmed | From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure |
title_short | From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure |
title_sort | from personalized to precision medicine in oncology: a model-based dosing approach to optimize achievement of imatinib target exposure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142039/ https://www.ncbi.nlm.nih.gov/pubmed/37111566 http://dx.doi.org/10.3390/pharmaceutics15041081 |
work_keys_str_mv | AT goutellesylvain frompersonalizedtoprecisionmedicineinoncologyamodelbaseddosingapproachtooptimizeachievementofimatinibtargetexposure AT guidimonia frompersonalizedtoprecisionmedicineinoncologyamodelbaseddosingapproachtooptimizeachievementofimatinibtargetexposure AT gottaverena frompersonalizedtoprecisionmedicineinoncologyamodelbaseddosingapproachtooptimizeachievementofimatinibtargetexposure AT csajkachantal frompersonalizedtoprecisionmedicineinoncologyamodelbaseddosingapproachtooptimizeachievementofimatinibtargetexposure AT buclinthierry frompersonalizedtoprecisionmedicineinoncologyamodelbaseddosingapproachtooptimizeachievementofimatinibtargetexposure AT widmernicolas frompersonalizedtoprecisionmedicineinoncologyamodelbaseddosingapproachtooptimizeachievementofimatinibtargetexposure |