Cargando…
DCFF-MTAD: A Multivariate Time-Series Anomaly Detection Model Based on Dual-Channel Feature Fusion
The detection of anomalies in multivariate time-series data is becoming increasingly important in the automated and continuous monitoring of complex systems and devices due to the rapid increase in data volume and dimension. To address this challenge, we present a multivariate time-series anomaly de...
Autores principales: | Xu, Zheng, Yang, Yumeng, Gao, Xinwen, Hu, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142265/ https://www.ncbi.nlm.nih.gov/pubmed/37112251 http://dx.doi.org/10.3390/s23083910 |
Ejemplares similares
-
Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian Network
por: Ding, Nan, et al.
Publicado: (2018) -
GTAD: Graph and Temporal Neural Network for Multivariate Time Series Anomaly Detection
por: Guan, Siwei, et al.
Publicado: (2022) -
Disentangled Dynamic Deviation Transformer Networks for Multivariate Time Series Anomaly Detection
por: Wang, Chunzhi, et al.
Publicado: (2023) -
Ensemble Neuroevolution-Based Approach for Multivariate Time Series Anomaly Detection
por: Faber, Kamil, et al.
Publicado: (2021) -
Anomaly detection using spatial and temporal information in multivariate time series
por: Tian, Zhiwen, et al.
Publicado: (2023)