Cargando…
Protective Effects of Epigallocatechin-3-gallate (EGCG) against the Jellyfish Nemopilema nomurai Envenoming
Jellyfish stings are the most common marine animal injuries worldwide, with approximately 150 million envenomation cases annually, and the victims may suffer from severe pain, itching, swelling, inflammation, arrhythmias, cardiac failure, or even death. Consequently, identification of effective firs...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142270/ https://www.ncbi.nlm.nih.gov/pubmed/37104221 http://dx.doi.org/10.3390/toxins15040283 |
Sumario: | Jellyfish stings are the most common marine animal injuries worldwide, with approximately 150 million envenomation cases annually, and the victims may suffer from severe pain, itching, swelling, inflammation, arrhythmias, cardiac failure, or even death. Consequently, identification of effective first aid reagents for jellyfish envenoming is urgently needed. Here, we found that the polyphenol epigallocatechin-3-gallate (EGCG) markedly antagonized the hemolytic toxicity, proteolytic activity, and cardiomyocyte toxicity of the jellyfish Nemopilema nomurai venom in vitro and could prevent and treat systemic envenoming caused by N. nomurai venom in vivo. Moreover, EGCG is a natural plant active ingredient and widely used as a food additive without toxic side effects. Hence, we suppose that EGCG might be an effective antagonist against systemic envenoming induced by jellyfish venom. |
---|