Cargando…

Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks

Additive manufacturing has revolutionized prototyping and small-scale production in the past years. By creating parts layer by layer, a tool-less production technology is established, which allows for rapid adaption of the manufacturing process and customization of the product. However, the geometri...

Descripción completa

Detalles Bibliográficos
Autores principales: Pelzer, Lukas, Posada-Moreno, Andrés Felipe, Müller, Kai, Greb, Christoph, Hopmann, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142370/
https://www.ncbi.nlm.nih.gov/pubmed/37112031
http://dx.doi.org/10.3390/polym15081884
_version_ 1785033597122510848
author Pelzer, Lukas
Posada-Moreno, Andrés Felipe
Müller, Kai
Greb, Christoph
Hopmann, Christian
author_facet Pelzer, Lukas
Posada-Moreno, Andrés Felipe
Müller, Kai
Greb, Christoph
Hopmann, Christian
author_sort Pelzer, Lukas
collection PubMed
description Additive manufacturing has revolutionized prototyping and small-scale production in the past years. By creating parts layer by layer, a tool-less production technology is established, which allows for rapid adaption of the manufacturing process and customization of the product. However, the geometric freedom of the technologies comes with a large number of process parameters, especially in Fused Deposition Modeling (FDM), all of which influence the resulting part’s properties. Since those parameters show interdependencies and non-linearities, choosing a suitable set to create the desired part properties is not trivial. This study demonstrates the use of Invertible Neural Networks (INN) for generating process parameters objectively. By specifying the desired part in the categories of mechanical properties, optical properties and manufacturing time, the demonstrated INN generates process parameters capable of closely replicating the desired part. Validation trials prove the precision of the solution with measured properties achieving the desired properties to up to 99.96% and a mean accuracy of 85.34%.
format Online
Article
Text
id pubmed-10142370
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101423702023-04-29 Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks Pelzer, Lukas Posada-Moreno, Andrés Felipe Müller, Kai Greb, Christoph Hopmann, Christian Polymers (Basel) Article Additive manufacturing has revolutionized prototyping and small-scale production in the past years. By creating parts layer by layer, a tool-less production technology is established, which allows for rapid adaption of the manufacturing process and customization of the product. However, the geometric freedom of the technologies comes with a large number of process parameters, especially in Fused Deposition Modeling (FDM), all of which influence the resulting part’s properties. Since those parameters show interdependencies and non-linearities, choosing a suitable set to create the desired part properties is not trivial. This study demonstrates the use of Invertible Neural Networks (INN) for generating process parameters objectively. By specifying the desired part in the categories of mechanical properties, optical properties and manufacturing time, the demonstrated INN generates process parameters capable of closely replicating the desired part. Validation trials prove the precision of the solution with measured properties achieving the desired properties to up to 99.96% and a mean accuracy of 85.34%. MDPI 2023-04-14 /pmc/articles/PMC10142370/ /pubmed/37112031 http://dx.doi.org/10.3390/polym15081884 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pelzer, Lukas
Posada-Moreno, Andrés Felipe
Müller, Kai
Greb, Christoph
Hopmann, Christian
Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks
title Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks
title_full Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks
title_fullStr Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks
title_full_unstemmed Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks
title_short Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks
title_sort process parameter prediction for fused deposition modeling using invertible neural networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142370/
https://www.ncbi.nlm.nih.gov/pubmed/37112031
http://dx.doi.org/10.3390/polym15081884
work_keys_str_mv AT pelzerlukas processparameterpredictionforfuseddepositionmodelingusinginvertibleneuralnetworks
AT posadamorenoandresfelipe processparameterpredictionforfuseddepositionmodelingusinginvertibleneuralnetworks
AT mullerkai processparameterpredictionforfuseddepositionmodelingusinginvertibleneuralnetworks
AT grebchristoph processparameterpredictionforfuseddepositionmodelingusinginvertibleneuralnetworks
AT hopmannchristian processparameterpredictionforfuseddepositionmodelingusinginvertibleneuralnetworks