Cargando…
Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks
Additive manufacturing has revolutionized prototyping and small-scale production in the past years. By creating parts layer by layer, a tool-less production technology is established, which allows for rapid adaption of the manufacturing process and customization of the product. However, the geometri...
Autores principales: | Pelzer, Lukas, Posada-Moreno, Andrés Felipe, Müller, Kai, Greb, Christoph, Hopmann, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142370/ https://www.ncbi.nlm.nih.gov/pubmed/37112031 http://dx.doi.org/10.3390/polym15081884 |
Ejemplares similares
-
Effect of Process Parameters on Energy Consumption, Physical, and Mechanical Properties of Fused Deposition Modeling
por: Enemuoh, Emmanuel U., et al.
Publicado: (2021) -
A Survey of the Influence of Process Parameters on Mechanical Properties of Fused Deposition Modeling Parts
por: Gao, Ge, et al.
Publicado: (2022) -
Acquiring Process Knowledge in Extrusion-Based Additive Manufacturing via Interpretable Machine Learning
por: Pelzer, Lukas, et al.
Publicado: (2023) -
Impact of Processing Parameters on the Quality of Pharmaceutical Solid Dosage Forms Produced by Fused Deposition Modeling (FDM)
por: Alhijjaj, Muqdad, et al.
Publicado: (2019) -
Fused Deposition Modeling Parameter Optimization for Cost-Effective Metal Part Printing
por: Tosto, Claudio, et al.
Publicado: (2022)