Cargando…
Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province
The stratified acidic pit lake formed by the confluence of acid mine drainage has a unique ecological niche and is a model system for extreme microbial studies. Eukaryotes are a component of the AMD community, with the main members including microalgae, fungi, and a small number of protozoa. In this...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142529/ https://www.ncbi.nlm.nih.gov/pubmed/37110402 http://dx.doi.org/10.3390/microorganisms11040979 |
Sumario: | The stratified acidic pit lake formed by the confluence of acid mine drainage has a unique ecological niche and is a model system for extreme microbial studies. Eukaryotes are a component of the AMD community, with the main members including microalgae, fungi, and a small number of protozoa. In this study, we analyzed the structural traits and interactions of eukaryotes (primarily fungi and microalgae) in acidic pit lakes subjected to environmental gradients. Based on the findings, microalgae and fungi were found to dominate different water layers. Specifically, Chlorophyta showed dominance in the well-lit aerobic surface layer, whereas Basidiomycota was more abundant in the dark anoxic lower layer. Co-occurrence network analysis showed that reciprocal relationships between fungi and microalgae were prevalent in extremely acidic environments. Highly connected taxa within this network were Chlamydomonadaceae, Sporidiobolaceae, Filobasidiaceae, and unclassified Eukaryotes. Redundancy analysis (RDA) and random forest models revealed that Chlorophyta and Basidiomycota responded strongly to environmental gradients. Further analysis indicated that eukaryotic community structure was mainly determined by nutrient and metal concentrations. This study investigates the potential symbiosis between fungi and microalgae in the acidic pit lake, providing valuable insights for future eukaryotic biodiversity studies on AMD remediation. |
---|