Cargando…
Large-scale evaluation of k-fold cross-validation ensembles for uncertainty estimation
It is insightful to report an estimator that describes how certain a model is in a prediction, additionally to the prediction alone. For regression tasks, most approaches implement a variation of the ensemble method, apart from few exceptions. Instead of a single estimator, a group of estimators yie...
Autores principales: | Dutschmann, Thomas-Martin, Kinzel, Lennart, ter Laak, Antonius, Baumann, Knut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142532/ https://www.ncbi.nlm.nih.gov/pubmed/37118768 http://dx.doi.org/10.1186/s13321-023-00709-9 |
Ejemplares similares
-
Evaluating High-Variance Leaves as Uncertainty Measure for Random Forest Regression
por: Dutschmann, Thomas-Martin, et al.
Publicado: (2021) -
Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation
por: Baumann, Désirée, et al.
Publicado: (2014) -
Efficiency of different measures for defining the applicability domain of classification models
por: Klingspohn, Waldemar, et al.
Publicado: (2017) -
AdaBoost Ensemble Methods Using K-Fold Cross Validation for Survivability with the Early Detection of Heart Disease
por: Mahesh, T. R., et al.
Publicado: (2022) -
Using beta binomials to estimate classification uncertainty for ensemble models
por: Clark, Robert D, et al.
Publicado: (2014)