Cargando…

The Identification of Streptococcus pasteurianus Obtained from Six Regions in China by Multiplex PCR Assay and the Characteristics of Pathogenicity and Antimicrobial Resistance of This Zoonotic Pathogen

Streptococcus pasteurianus is a zoonotic pathogen causing meningitis and bacteremia in animals and humans. A lack of accurate and convenient detection methods hinders preventing and controlling diseases caused by S. pasteurianus. Additionally, there is limited knowledge about its pathogenicity and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Miaohang, Wang, Shuoyue, Zhu, Xinchi, Li, Xinchun, Bao, Yinli, Chen, Xiang, Wu, Zongfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142533/
https://www.ncbi.nlm.nih.gov/pubmed/37111501
http://dx.doi.org/10.3390/pathogens12040615
Descripción
Sumario:Streptococcus pasteurianus is a zoonotic pathogen causing meningitis and bacteremia in animals and humans. A lack of accurate and convenient detection methods hinders preventing and controlling diseases caused by S. pasteurianus. Additionally, there is limited knowledge about its pathogenicity and antimicrobial resistance characteristics, as there are only three complete genome sequences available. In this study, we established a multiplex PCR assay for the detection of S. pasteurianus, which was applied to six fecal samples from cattle with diarrhea and 285 samples from healthy pigs. Out of the samples tested, 24 were positive, including 5 from pig tonsils, 18 from pig hilar lymph nodes, and 1 from cattle feces. Two strains were isolated from positive samples, and their complete genomes were sequenced. The two strains were non-virulent in mice and multidrug-resistant by the antimicrobial susceptibility test. We first found the presence of genes tet(O/W/32/O) and lsa(E) in S. pasteurianus, leading to resistance to lincosamides and tetracyclines. The convenient and specific multiplex PCR assay provides essential technical support for epidemiological research, and the complete genome sequence of two non-virulent strains contributes to understanding this zoonotic bacterium’s genomic characteristics and pathogenesis.