Cargando…

Signal Novelty Detection as an Intrinsic Reward for Robotics

In advanced robot control, reinforcement learning is a common technique used to transform sensor data into signals for actuators, based on feedback from the robot’s environment. However, the feedback or reward is typically sparse, as it is provided mainly after the task’s completion or failure, lead...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubovčík, Martin, Dirgová Luptáková, Iveta, Pospíchal, Jiří
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142593/
https://www.ncbi.nlm.nih.gov/pubmed/37112324
http://dx.doi.org/10.3390/s23083985
Descripción
Sumario:In advanced robot control, reinforcement learning is a common technique used to transform sensor data into signals for actuators, based on feedback from the robot’s environment. However, the feedback or reward is typically sparse, as it is provided mainly after the task’s completion or failure, leading to slow convergence. Additional intrinsic rewards based on the state visitation frequency can provide more feedback. In this study, an Autoencoder deep learning neural network was utilized as novelty detection for intrinsic rewards to guide the search process through a state space. The neural network processed signals from various types of sensors simultaneously. It was tested on simulated robotic agents in a benchmark set of classic control OpenAI Gym test environments (including Mountain Car, Acrobot, CartPole, and LunarLander), achieving more efficient and accurate robot control in three of the four tasks (with only slight degradation in the Lunar Lander task) when purely intrinsic rewards were used compared to standard extrinsic rewards. By incorporating autoencoder-based intrinsic rewards, robots could potentially become more dependable in autonomous operations like space or underwater exploration or during natural disaster response. This is because the system could better adapt to changing environments or unexpected situations.