Cargando…
A Low-Stress Method for Determining Static and Dynamic Material Parameters for Vibration Isolation with the Use of VMQ Silicone
Progressive urbanisation causes building users to be affected by increasing amounts of noise and vibrations that come from transportation and other building users. This article presents a test method that can be used to identify quantities of methyl vinyl silicone rubber (VMQ) necessary to carry out...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142812/ https://www.ncbi.nlm.nih.gov/pubmed/37109796 http://dx.doi.org/10.3390/ma16082960 |
Sumario: | Progressive urbanisation causes building users to be affected by increasing amounts of noise and vibrations that come from transportation and other building users. This article presents a test method that can be used to identify quantities of methyl vinyl silicone rubber (VMQ) necessary to carry out solid mechanics finite element method simulations such as Young’s modulus, Poisson ratio, and damping parameters. These parameters are necessary to model the vibration isolation used for protection against noise and vibration. The article uses an original combination of dynamic response spectrum and image processing methods to determine these quantities. The tests were carried out using one machine for the range of normal compressive stresses of 64–255 kPa with cylindrical samples of various shape factors in the range of 1–0.25. The parameters for the simulation of solid mechanics in statics were obtained from image processing based on the deformation of the sample under load; for dynamic solid mechanics, the parameters were obtained from the response spectrum of the tested system. The article shows the possibility of determining the given quantities using the original method of the synthesis of dynamic response and FEM-supported image analysis, which states the article’s novelty. Additionally, limitations and preferred ranges of sample deformation in terms of load stress and shape factor are presented. |
---|