Cargando…

Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer

Machine learning (ML) is an effective tool to interrogate complex systems to find optimal parameters more efficiently than through manual methods. This efficiency is particularly important for systems with complex dynamics between multiple parameters and a subsequent high number of parameter configu...

Descripción completa

Detalles Bibliográficos
Autores principales: Dawson, Rach, O’Dwyer, Carolyn, Irwin, Edward, Mrozowski, Marcin S., Hunter, Dominic, Ingleby, Stuart, Riis, Erling, Griffin, Paul F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142828/
https://www.ncbi.nlm.nih.gov/pubmed/37112348
http://dx.doi.org/10.3390/s23084007
_version_ 1785033705740304384
author Dawson, Rach
O’Dwyer, Carolyn
Irwin, Edward
Mrozowski, Marcin S.
Hunter, Dominic
Ingleby, Stuart
Riis, Erling
Griffin, Paul F.
author_facet Dawson, Rach
O’Dwyer, Carolyn
Irwin, Edward
Mrozowski, Marcin S.
Hunter, Dominic
Ingleby, Stuart
Riis, Erling
Griffin, Paul F.
author_sort Dawson, Rach
collection PubMed
description Machine learning (ML) is an effective tool to interrogate complex systems to find optimal parameters more efficiently than through manual methods. This efficiency is particularly important for systems with complex dynamics between multiple parameters and a subsequent high number of parameter configurations, where an exhaustive optimisation search would be impractical. Here we present a number of automated machine learning strategies utilised for optimisation of a single-beam caesium (Cs) spin exchange relaxation free (SERF) optically pumped magnetometer (OPM). The sensitivity of the OPM ([Formula: see text]), is optimised through direct measurement of the noise floor, and indirectly through measurement of the on-resonance demodulated gradient (mV/nT) of the zero-field resonance. Both methods provide a viable strategy for the optimisation of sensitivity through effective control of the OPM’s operational parameters. Ultimately, this machine learning approach increased the optimal sensitivity from 500 [Formula: see text] to [Formula: see text]. The flexibility and efficiency of the ML approaches can be utilised to benchmark SERF OPM sensor hardware improvements, such as cell geometry, alkali species and sensor topologies.
format Online
Article
Text
id pubmed-10142828
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101428282023-04-29 Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer Dawson, Rach O’Dwyer, Carolyn Irwin, Edward Mrozowski, Marcin S. Hunter, Dominic Ingleby, Stuart Riis, Erling Griffin, Paul F. Sensors (Basel) Article Machine learning (ML) is an effective tool to interrogate complex systems to find optimal parameters more efficiently than through manual methods. This efficiency is particularly important for systems with complex dynamics between multiple parameters and a subsequent high number of parameter configurations, where an exhaustive optimisation search would be impractical. Here we present a number of automated machine learning strategies utilised for optimisation of a single-beam caesium (Cs) spin exchange relaxation free (SERF) optically pumped magnetometer (OPM). The sensitivity of the OPM ([Formula: see text]), is optimised through direct measurement of the noise floor, and indirectly through measurement of the on-resonance demodulated gradient (mV/nT) of the zero-field resonance. Both methods provide a viable strategy for the optimisation of sensitivity through effective control of the OPM’s operational parameters. Ultimately, this machine learning approach increased the optimal sensitivity from 500 [Formula: see text] to [Formula: see text]. The flexibility and efficiency of the ML approaches can be utilised to benchmark SERF OPM sensor hardware improvements, such as cell geometry, alkali species and sensor topologies. MDPI 2023-04-15 /pmc/articles/PMC10142828/ /pubmed/37112348 http://dx.doi.org/10.3390/s23084007 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dawson, Rach
O’Dwyer, Carolyn
Irwin, Edward
Mrozowski, Marcin S.
Hunter, Dominic
Ingleby, Stuart
Riis, Erling
Griffin, Paul F.
Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer
title Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer
title_full Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer
title_fullStr Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer
title_full_unstemmed Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer
title_short Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer
title_sort automated machine learning strategies for multi-parameter optimisation of a caesium-based portable zero-field magnetometer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142828/
https://www.ncbi.nlm.nih.gov/pubmed/37112348
http://dx.doi.org/10.3390/s23084007
work_keys_str_mv AT dawsonrach automatedmachinelearningstrategiesformultiparameteroptimisationofacaesiumbasedportablezerofieldmagnetometer
AT odwyercarolyn automatedmachinelearningstrategiesformultiparameteroptimisationofacaesiumbasedportablezerofieldmagnetometer
AT irwinedward automatedmachinelearningstrategiesformultiparameteroptimisationofacaesiumbasedportablezerofieldmagnetometer
AT mrozowskimarcins automatedmachinelearningstrategiesformultiparameteroptimisationofacaesiumbasedportablezerofieldmagnetometer
AT hunterdominic automatedmachinelearningstrategiesformultiparameteroptimisationofacaesiumbasedportablezerofieldmagnetometer
AT inglebystuart automatedmachinelearningstrategiesformultiparameteroptimisationofacaesiumbasedportablezerofieldmagnetometer
AT riiserling automatedmachinelearningstrategiesformultiparameteroptimisationofacaesiumbasedportablezerofieldmagnetometer
AT griffinpaulf automatedmachinelearningstrategiesformultiparameteroptimisationofacaesiumbasedportablezerofieldmagnetometer