Cargando…

Dynamic Mechanical Properties of PVC Plastics in the Formation of Microstructures with Novel Magnetostrictor

Molding in thermoplastic polymers using ultrasonic hot embossing technology is promising due to its high precision reproducibility. To understand, analyze and apply the formation of polymer microstructures by the ultrasonic hot embossing method, it is necessary to understand dynamic loading conditio...

Descripción completa

Detalles Bibliográficos
Autores principales: Ciganas, Justas, Bubulis, Algimantas, Jurenas, Vytautas, Griskevicius, Paulius, Palevicius, Arvydas, Urbaite, Sigita, Janusas, Giedrius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142852/
https://www.ncbi.nlm.nih.gov/pubmed/37421053
http://dx.doi.org/10.3390/mi14040820
Descripción
Sumario:Molding in thermoplastic polymers using ultrasonic hot embossing technology is promising due to its high precision reproducibility. To understand, analyze and apply the formation of polymer microstructures by the ultrasonic hot embossing method, it is necessary to understand dynamic loading conditions. The Standard Linear Solid model (SLS) is a method that allows analyzing the viscoelastic properties of materials by representing them as a combination of springs and dashpots. However, this model is general, and it is challenging to represent a viscoelastic material with multiple relaxations. Therefore, this article aims to use the data obtained from dynamic mechanical analysis for extrapolation in a wide range of cyclic deformations and to use the obtained data in microstructure formation simulations. The formation was replicated using a novel magnetostrictor design that sets a specific temperature and vibration frequency. The changes were analyzed on a diffractometer. After the diffraction efficiency measurement, it was found that the highest quality structures were formed at a temperature of 68 °C, a frequency of 10 kHz, a frequency amplitude of 1.5 µm and a force of 1 kN force. Moreover, the structures could be molded on any thickness of plastic.