Cargando…
A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1
Patients diagnosed with exudative neovascular age-related macular degeneration are commonly treated with anti-vascular endothelial growth factor (anti-VEGF) agents. However, response to treatment is heterogeneous, without a clinical explanation. Predicting suboptimal response at baseline will enable...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142969/ https://www.ncbi.nlm.nih.gov/pubmed/37109349 http://dx.doi.org/10.3390/jcm12083013 |
_version_ | 1785033739470897152 |
---|---|
author | Chorev, Michal Haderlein, Jonas Chandra, Shruti Menon, Geeta Burton, Benjamin J. L. Pearce, Ian McKibbin, Martin Thottarath, Sridevi Karatsai, Eleni Chandak, Swati Kotagiri, Ajay Talks, James Grabowska, Anna Ghanchi, Faruque Gale, Richard Hamilton, Robin Antony, Bhavna Garnavi, Rahil Mareels, Iven Giani, Andrea Chong, Victor Sivaprasad, Sobha |
author_facet | Chorev, Michal Haderlein, Jonas Chandra, Shruti Menon, Geeta Burton, Benjamin J. L. Pearce, Ian McKibbin, Martin Thottarath, Sridevi Karatsai, Eleni Chandak, Swati Kotagiri, Ajay Talks, James Grabowska, Anna Ghanchi, Faruque Gale, Richard Hamilton, Robin Antony, Bhavna Garnavi, Rahil Mareels, Iven Giani, Andrea Chong, Victor Sivaprasad, Sobha |
author_sort | Chorev, Michal |
collection | PubMed |
description | Patients diagnosed with exudative neovascular age-related macular degeneration are commonly treated with anti-vascular endothelial growth factor (anti-VEGF) agents. However, response to treatment is heterogeneous, without a clinical explanation. Predicting suboptimal response at baseline will enable more efficient clinical trial designs for novel, future interventions and facilitate individualised therapies. In this multicentre study, we trained a multi-modal artificial intelligence (AI) system to identify suboptimal responders to the loading-phase of the anti-VEGF agent aflibercept from baseline characteristics. We collected clinical features and optical coherence tomography scans from 1720 eyes of 1612 patients between 2019 and 2021. We evaluated our AI system as a patient selection method by emulating hypothetical clinical trials of different sizes based on our test set. Our method detected up to 57.6% more suboptimal responders than random selection, and up to 24.2% more than any alternative selection criteria tested. Applying this method to the entry process of candidates into randomised controlled trials may contribute to the success of such trials and further inform personalised care. |
format | Online Article Text |
id | pubmed-10142969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101429692023-04-29 A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1 Chorev, Michal Haderlein, Jonas Chandra, Shruti Menon, Geeta Burton, Benjamin J. L. Pearce, Ian McKibbin, Martin Thottarath, Sridevi Karatsai, Eleni Chandak, Swati Kotagiri, Ajay Talks, James Grabowska, Anna Ghanchi, Faruque Gale, Richard Hamilton, Robin Antony, Bhavna Garnavi, Rahil Mareels, Iven Giani, Andrea Chong, Victor Sivaprasad, Sobha J Clin Med Article Patients diagnosed with exudative neovascular age-related macular degeneration are commonly treated with anti-vascular endothelial growth factor (anti-VEGF) agents. However, response to treatment is heterogeneous, without a clinical explanation. Predicting suboptimal response at baseline will enable more efficient clinical trial designs for novel, future interventions and facilitate individualised therapies. In this multicentre study, we trained a multi-modal artificial intelligence (AI) system to identify suboptimal responders to the loading-phase of the anti-VEGF agent aflibercept from baseline characteristics. We collected clinical features and optical coherence tomography scans from 1720 eyes of 1612 patients between 2019 and 2021. We evaluated our AI system as a patient selection method by emulating hypothetical clinical trials of different sizes based on our test set. Our method detected up to 57.6% more suboptimal responders than random selection, and up to 24.2% more than any alternative selection criteria tested. Applying this method to the entry process of candidates into randomised controlled trials may contribute to the success of such trials and further inform personalised care. MDPI 2023-04-20 /pmc/articles/PMC10142969/ /pubmed/37109349 http://dx.doi.org/10.3390/jcm12083013 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chorev, Michal Haderlein, Jonas Chandra, Shruti Menon, Geeta Burton, Benjamin J. L. Pearce, Ian McKibbin, Martin Thottarath, Sridevi Karatsai, Eleni Chandak, Swati Kotagiri, Ajay Talks, James Grabowska, Anna Ghanchi, Faruque Gale, Richard Hamilton, Robin Antony, Bhavna Garnavi, Rahil Mareels, Iven Giani, Andrea Chong, Victor Sivaprasad, Sobha A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1 |
title | A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1 |
title_full | A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1 |
title_fullStr | A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1 |
title_full_unstemmed | A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1 |
title_short | A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1 |
title_sort | multi-modal ai-driven cohort selection tool to predict suboptimal non-responders to aflibercept loading-phase for neovascular age-related macular degeneration: precise study report 1 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142969/ https://www.ncbi.nlm.nih.gov/pubmed/37109349 http://dx.doi.org/10.3390/jcm12083013 |
work_keys_str_mv | AT chorevmichal amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT haderleinjonas amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT chandrashruti amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT menongeeta amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT burtonbenjaminjl amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT pearceian amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT mckibbinmartin amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT thottarathsridevi amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT karatsaieleni amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT chandakswati amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT kotagiriajay amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT talksjames amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT grabowskaanna amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT ghanchifaruque amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT galerichard amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT hamiltonrobin amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT antonybhavna amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT garnavirahil amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT mareelsiven amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT gianiandrea amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT chongvictor amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT sivaprasadsobha amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT chorevmichal multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT haderleinjonas multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT chandrashruti multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT menongeeta multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT burtonbenjaminjl multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT pearceian multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT mckibbinmartin multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT thottarathsridevi multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT karatsaieleni multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT chandakswati multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT kotagiriajay multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT talksjames multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT grabowskaanna multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT ghanchifaruque multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT galerichard multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT hamiltonrobin multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT antonybhavna multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT garnavirahil multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT mareelsiven multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT gianiandrea multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT chongvictor multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 AT sivaprasadsobha multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1 |