Cargando…

A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1

Patients diagnosed with exudative neovascular age-related macular degeneration are commonly treated with anti-vascular endothelial growth factor (anti-VEGF) agents. However, response to treatment is heterogeneous, without a clinical explanation. Predicting suboptimal response at baseline will enable...

Descripción completa

Detalles Bibliográficos
Autores principales: Chorev, Michal, Haderlein, Jonas, Chandra, Shruti, Menon, Geeta, Burton, Benjamin J. L., Pearce, Ian, McKibbin, Martin, Thottarath, Sridevi, Karatsai, Eleni, Chandak, Swati, Kotagiri, Ajay, Talks, James, Grabowska, Anna, Ghanchi, Faruque, Gale, Richard, Hamilton, Robin, Antony, Bhavna, Garnavi, Rahil, Mareels, Iven, Giani, Andrea, Chong, Victor, Sivaprasad, Sobha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142969/
https://www.ncbi.nlm.nih.gov/pubmed/37109349
http://dx.doi.org/10.3390/jcm12083013
_version_ 1785033739470897152
author Chorev, Michal
Haderlein, Jonas
Chandra, Shruti
Menon, Geeta
Burton, Benjamin J. L.
Pearce, Ian
McKibbin, Martin
Thottarath, Sridevi
Karatsai, Eleni
Chandak, Swati
Kotagiri, Ajay
Talks, James
Grabowska, Anna
Ghanchi, Faruque
Gale, Richard
Hamilton, Robin
Antony, Bhavna
Garnavi, Rahil
Mareels, Iven
Giani, Andrea
Chong, Victor
Sivaprasad, Sobha
author_facet Chorev, Michal
Haderlein, Jonas
Chandra, Shruti
Menon, Geeta
Burton, Benjamin J. L.
Pearce, Ian
McKibbin, Martin
Thottarath, Sridevi
Karatsai, Eleni
Chandak, Swati
Kotagiri, Ajay
Talks, James
Grabowska, Anna
Ghanchi, Faruque
Gale, Richard
Hamilton, Robin
Antony, Bhavna
Garnavi, Rahil
Mareels, Iven
Giani, Andrea
Chong, Victor
Sivaprasad, Sobha
author_sort Chorev, Michal
collection PubMed
description Patients diagnosed with exudative neovascular age-related macular degeneration are commonly treated with anti-vascular endothelial growth factor (anti-VEGF) agents. However, response to treatment is heterogeneous, without a clinical explanation. Predicting suboptimal response at baseline will enable more efficient clinical trial designs for novel, future interventions and facilitate individualised therapies. In this multicentre study, we trained a multi-modal artificial intelligence (AI) system to identify suboptimal responders to the loading-phase of the anti-VEGF agent aflibercept from baseline characteristics. We collected clinical features and optical coherence tomography scans from 1720 eyes of 1612 patients between 2019 and 2021. We evaluated our AI system as a patient selection method by emulating hypothetical clinical trials of different sizes based on our test set. Our method detected up to 57.6% more suboptimal responders than random selection, and up to 24.2% more than any alternative selection criteria tested. Applying this method to the entry process of candidates into randomised controlled trials may contribute to the success of such trials and further inform personalised care.
format Online
Article
Text
id pubmed-10142969
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101429692023-04-29 A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1 Chorev, Michal Haderlein, Jonas Chandra, Shruti Menon, Geeta Burton, Benjamin J. L. Pearce, Ian McKibbin, Martin Thottarath, Sridevi Karatsai, Eleni Chandak, Swati Kotagiri, Ajay Talks, James Grabowska, Anna Ghanchi, Faruque Gale, Richard Hamilton, Robin Antony, Bhavna Garnavi, Rahil Mareels, Iven Giani, Andrea Chong, Victor Sivaprasad, Sobha J Clin Med Article Patients diagnosed with exudative neovascular age-related macular degeneration are commonly treated with anti-vascular endothelial growth factor (anti-VEGF) agents. However, response to treatment is heterogeneous, without a clinical explanation. Predicting suboptimal response at baseline will enable more efficient clinical trial designs for novel, future interventions and facilitate individualised therapies. In this multicentre study, we trained a multi-modal artificial intelligence (AI) system to identify suboptimal responders to the loading-phase of the anti-VEGF agent aflibercept from baseline characteristics. We collected clinical features and optical coherence tomography scans from 1720 eyes of 1612 patients between 2019 and 2021. We evaluated our AI system as a patient selection method by emulating hypothetical clinical trials of different sizes based on our test set. Our method detected up to 57.6% more suboptimal responders than random selection, and up to 24.2% more than any alternative selection criteria tested. Applying this method to the entry process of candidates into randomised controlled trials may contribute to the success of such trials and further inform personalised care. MDPI 2023-04-20 /pmc/articles/PMC10142969/ /pubmed/37109349 http://dx.doi.org/10.3390/jcm12083013 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chorev, Michal
Haderlein, Jonas
Chandra, Shruti
Menon, Geeta
Burton, Benjamin J. L.
Pearce, Ian
McKibbin, Martin
Thottarath, Sridevi
Karatsai, Eleni
Chandak, Swati
Kotagiri, Ajay
Talks, James
Grabowska, Anna
Ghanchi, Faruque
Gale, Richard
Hamilton, Robin
Antony, Bhavna
Garnavi, Rahil
Mareels, Iven
Giani, Andrea
Chong, Victor
Sivaprasad, Sobha
A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1
title A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1
title_full A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1
title_fullStr A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1
title_full_unstemmed A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1
title_short A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1
title_sort multi-modal ai-driven cohort selection tool to predict suboptimal non-responders to aflibercept loading-phase for neovascular age-related macular degeneration: precise study report 1
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142969/
https://www.ncbi.nlm.nih.gov/pubmed/37109349
http://dx.doi.org/10.3390/jcm12083013
work_keys_str_mv AT chorevmichal amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT haderleinjonas amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT chandrashruti amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT menongeeta amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT burtonbenjaminjl amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT pearceian amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT mckibbinmartin amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT thottarathsridevi amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT karatsaieleni amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT chandakswati amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT kotagiriajay amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT talksjames amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT grabowskaanna amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT ghanchifaruque amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT galerichard amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT hamiltonrobin amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT antonybhavna amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT garnavirahil amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT mareelsiven amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT gianiandrea amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT chongvictor amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT sivaprasadsobha amultimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT chorevmichal multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT haderleinjonas multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT chandrashruti multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT menongeeta multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT burtonbenjaminjl multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT pearceian multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT mckibbinmartin multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT thottarathsridevi multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT karatsaieleni multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT chandakswati multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT kotagiriajay multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT talksjames multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT grabowskaanna multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT ghanchifaruque multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT galerichard multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT hamiltonrobin multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT antonybhavna multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT garnavirahil multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT mareelsiven multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT gianiandrea multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT chongvictor multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1
AT sivaprasadsobha multimodalaidrivencohortselectiontooltopredictsuboptimalnonresponderstoafliberceptloadingphaseforneovascularagerelatedmaculardegenerationprecisestudyreport1